About this Journal Submit a Manuscript Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 409157, 8 pages
http://dx.doi.org/10.5402/2012/409157
Research Article

Pyrolysis of Tall Oil-Derived Fatty and Resin Acid Mixtures

1Kannus Research Unit, Finnish Forest Research Institute, Silmäjärventie 2, 69100 Kannus, Finland
2Laboratory of Applied Chemistry, Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Finland

Received 4 April 2012; Accepted 23 May 2012

Academic Editors: M. Garcia-Perez and A. Stoppato

Copyright © 2012 Hanna Lappi and Raimo Alén. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Holmbom, “Improved gas chromatographic analysis of fatty and resin acid mixtures with special reference to tall oil,” Journal of the American Oil Chemists' Society, vol. 54, no. 7, pp. 289–293, 1977. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Alén, “Basic chemistry of wood delignification,” in Forest Products Chemistry, P. Stenius, Ed., p. 59, Fapet Oy, Helsinki, Finland, 2000.
  3. R. Alén, “Principles in biorefining,” in Biorefining of Forest Resources, R. Alén, Ed., pp. 55–114, Paperi ja Puu Oy, Helsinki, Finland, 2011.
  4. B. Holmbom and R. Ekman, Tall Oil Precursors of Scots Pine and Common Spruce and Their Change During Sulphate Pulping, vol. 38 of Acta Academiae Aboensis B, Åbo Akademi, 1978.
  5. B. Holmbom and E. Avela, Studies on Tall Oil from Pine and Birch 1. Composition of Fatty and Resin Acids in Sulfate Soaps and in Crude Tall Oils, vol. 31 of Acta Academiae Aboensis, Åbo Akademi, 1971.
  6. B. Holmbom, “The behavior of resin acids during tall oil distillation,” Journal of the American Oil Chemists' Society, vol. 55, no. 12, pp. 876–880, 1978. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Valto, J. Knuutinen, and R. Alén, “Fast analysis of relative levels of dehydroabietic acid in papermaking process waters by on-line sample enrichment followed by atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS),” International Journal of Environmental Analytical Chemistry, vol. 88, no. 13, pp. 969–978, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. DeOliveira, R. L. Quirino, P. A. Z. Suarez, and A. G. S. Prado, “Heats of combustion of biofuels obtained by pyrolysis and by transesterification and of biofuel/diesel blends,” Thermochimica Acta, vol. 450, no. 1-2, pp. 87–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. D. Maher, K. M. Kirkwood, M. R. Gray, and D. C. Bressler, “Pyrolytic decarboxylation and cracking of stearic acid,” Industrial and Engineering Chemistry Research, vol. 47, no. 15, pp. 5328–5336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. W. Huber and A. Corma, “Synergies between bio- and oil refineries for the production of fuels from biomass,” Angewandte Chemie, vol. 46, no. 38, pp. 7184–7201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Lappi and R. Alén, “Production of vegetable oil-based biofuels—thermochemical behavior of fatty acid sodium salts during pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 274–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Lappi and R. Alén, “Pyrolysis of vegetable oil soaps—palm, olive, rapeseed and castor oils,” Journal of Analytical and Applied Pyrolysis, vol. 91, no. 1, pp. 154–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Lappi and R. Alén, “Pyrolysis of crude tall-oil derived products,” in Bioresources, vol. 6, no. 4, pp. 5121–5138, 2011.
  14. K. M. Doll, B. K. Sharma, P. A. Z. Suarez, and S. Z. Erhan, “Comparing biofuels obtained from pyrolysis, of soybean oil or soapstock, with traditional soybean biodiesel: density, kinematic viscosity, and surface tensions,” Energy and Fuels, vol. 22, no. 3, pp. 2061–2066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Aatola, M. Larmi, T. Sarjovaara, and S. Mikkonen, “Hydrotreated vegetable Oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine,” SAE International Journal of Engines, vol. 1, no. 1, pp. 1251–1262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. D. Maher and D. C. Bressler, “Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals,” Bioresource Technology, vol. 98, no. 12, pp. 2351–2368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Dindi and L. E. Murillo, Patent application: Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors, Patent application number: 20120103868, 2012, http://www.faqs.org/patents/app/20120103868#b#ixzz1wqb11fOS.
  18. X. Junming, J. Jianchun, L. Yanju, and C. Jie, “Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils,” Bioresource Technology, vol. 100, no. 20, pp. 4867–4870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. B. Jones, J. E. Holladay, C. Valkenburg et al., Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case, U.S. Department of Energy, 2009.
  20. R. Luque, L. Herrero-Davila, J. M. Campelo et al., “Biofuels: a technological perspective,” Energy & Environmental Science, vol. 1, no. 5, pp. 542–564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of wood/biomass for bio-oil: a critical review,” Energy and Fuels, vol. 20, no. 3, pp. 848–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Bridgwater and K. Maniatis, “The production of biofuels by the thermochemical processing of biomass,” in Molecular to Global Photosynthesis, M. D. Archer, Ed., pp. 521–595, Imperial College, Singapore, 2004.
  23. P. Bocchini, G. C. Galletti, S. Camarero, and A. T. Martinez, “Absolute quantitation of lignin pyrolysis products using an internal standard,” Journal of Chromatography A, vol. 773, no. 1-2, pp. 227–232, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Holmbom, E. Avela, and S. Pekkala, “Capillary gas chromatography-mass spectrometry of resin acids in tall oil rosin,” Journal of the American Oil Chemists Society, vol. 51, no. 9, pp. 397–400, 1974. View at Publisher · View at Google Scholar · View at Scopus
  25. W. A. Hartgers, J. S. S. Damste, and J. W. de Leeuw, “Curie-point pyrolysis of sodium salts of functionalized fatty acids,” Journal of Analytical and Applied Pyrolysis, vol. 34, no. 2, pp. 191–217, 1995. View at Scopus
  26. R. F. Severson, W. H. Schuller, and R. V. Lawernce, “Pyrolyses of certain resin acids at 800C,” Journal of Chemical and Engineering Data, vol. 17, no. 2, pp. 250–252, 1972. View at Scopus
  27. S. C. Moldoveanu, “Pyrolysis of carboxylic acids,” in Techniques and Instrumentation in Analytical Chemistry, S. C. Moldoveanu , Ed., pp. 471–526, Elsevier, New York, NY, USA, 2010.