About this Journal Submit a Manuscript Table of Contents
ISRN Meteorology
Volume 2012 (2012), Article ID 434176, 7 pages
http://dx.doi.org/10.5402/2012/434176
Research Article

Adaptive Modelling of the Daily Behavior of the Boundary Layer Ozone in Macau

Department of Civil and Environmental Engineering, University of Macau, Macau, China

Received 5 April 2012; Accepted 21 May 2012

Academic Editors: H. Guo and Z. H. Shon

Copyright © 2012 K. M. Chao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Solberg, R. Bergström, J. Langner, T. Laurila, and A. Lindskog, “Changes in Nordic surface ozone episodes due to European emission reductions in the 1990s,” Atmospheric Environment, vol. 39, no. 1, pp. 179–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. I. V. Sousa, F. G. Martins, M. C. M. Alvim-Ferraz, and M. C. Pereira, “Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations,” Environmental Modelling and Software, vol. 22, no. 1, pp. 97–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Syri, M. Amann, W. Schöpp, and C. Heyes, “Estimating long-term population exposure to ozone in urban areas of Europe,” Environmental Pollution, vol. 113, no. 1, pp. 59–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Wang, W. Lu, X. Wang, and A. Y. T. Leung, “Prediction of maximum daily ozone level using combined neural network and statistical characteristics,” Environment International, vol. 29, no. 5, pp. 555–562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Pastor-Bárcenas, E. Soria-Olivas, J. D. Martín-Guerrero, G. Camps-Valls, J. L. Carrasco-Rodríguez, and S. Del Valle-Tascón, “Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modelling,” Ecological Modelling, vol. 182, no. 2, pp. 149–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Cai, Y. Yin, and M. Xie, “Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach,” Transportation Research Part D, vol. 14, no. 1, pp. 32–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. F. Ip, C. M. Vong, J. Y. Yang, and P. K. Wong, “Forecasting daily ambient air pollution based on least squares support vector machines,” in Proceedings of the IEEE International Conference on Information and Automation (ICIA '10), pp. 571–575, Haerbin, Heilongjiang, China, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. I. Hoi, K. V. Yuen, and K. M. Mok, “Prediction of daily averaged PM10 concentrations by statistical time-varying model,” Atmospheric Environment, vol. 43, no. 16, pp. 2579–2581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME, Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.
  10. R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Transactions of the ASME, Journal of Basic Engineering, vol. 83, pp. 95–107, 1961.
  11. K. I. Hoi, K. V. Yuen, and K. M. Mok, “Optimizing the performance of kalman filter based statistical time-varying air quality models,” Global Nest Journal, vol. 12, no. 1, pp. 27–39, 2010. View at Scopus
  12. K. V. Yuen, Bayesian Methods for Structural Dynamics and Civil Engineering, John Wiley and Sons, 2010.
  13. M. Q. Pan, “Analysis of air quality situation in Macau,” Final Year Project Report of B.Sc. in Civil Engineering, University of Macau, Macau, 2009.
  14. C. Dueñas, M. C. Fernández, S. Cañete, J. Carretero, and E. Liger, “Analyses of ozone in urban and rural sites in Málaga (Spain),” Chemosphere, vol. 56, no. 6, pp. 631–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Sillman, “The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments,” Atmospheric Environment, vol. 33, no. 12, pp. 1821–1845, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Dueas, M. C. Fernández, S. Caete, J. Carretero, and E. Liger, “Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast,” Science of the Total Environment, vol. 299, no. 1–3, pp. 97–113, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Wang, Y. Y. Wu, T. F. Cheung, and K. S. Lam, “A study of surface ozone and the relation to complex wind flow in Hong Kong,” Atmospheric Environment, vol. 35, no. 18, pp. 3203–3215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Wilks, Statistical Methods in the Atmospheric Sciences, Academic Press, 3rd edition, 2011.