About this Journal Submit a Manuscript Table of Contents
ISRN Chemical Engineering
Volume 2012 (2012), Article ID 437186, 13 pages
http://dx.doi.org/10.5402/2012/437186
Research Article

Modeling Performance of High-Temperature Biomass Gasification Process

College of Engineering and Technology, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania

Received 20 July 2012; Accepted 10 August 2012

Academic Editors: J. Canosa and A. M. Seayad

Copyright © 2012 C. F. Mhilu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Biomass utilization is becoming a subject of increasing interest as an alternative to clean fuel. A novel gasification process using highly preheated air gasifier using agricultural residue such as sugar bagasse, rice husks, and palm stem widely available in Tanzania is presented. The study examines, irreversibilities making the gasifier the least efficient unit in the gasification process employing a thermodynamic equilibrium model allowing predicting the main product gas composition CO, CO2, H2, and CH4. The derived model equations are computed using the MAPLE process simulation code in MATLAB. The gasification regime is investigated at temperatures ranging from 800 K to 1400 K and at equivalence ratio (ER) values between 0.3 and 0.4. The results obtained conform to the second law efficiency based on chemical exergy yielding maximum values for the types of biomass materials used. These results indicate that the application of preheated air has an effect on the increase of the chemical exergy efficiency of the product gas, hence reducing the level of irreversibility. Similarly, these results show that the combined efficiency based on physical and chemical exergy is low, suggesting that higher irreversibilities are encountered, since the exergy present in the form of physical exergy is utilized to heat the reactants. Such exergy losses can be minimized by altering the ratio of physical and chemical exergy in the syngas production.