About this Journal Submit a Manuscript Table of Contents
ISRN Chemical Engineering
Volume 2012 (2012), Article ID 487037, 8 pages
http://dx.doi.org/10.5402/2012/487037
Research Article

Evaluation of the Pozzolanic Activity of Sewage Sludge Ash

Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt

Received 22 May 2012; Accepted 18 July 2012

Academic Editors: M. Assael, A. Gil, and A. M. Seayad

Copyright © 2012 M. A. Tantawy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. S. Clescerl, A. E. Greenberg, and A. D. Eaton, Standard Methods For Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 20th edition, 1987.
  2. M. Eddy, Wastewater Engineering-Treatment, Disposal and Reuse, McGraw Hill, New York, NY, USA, 3rd edition, 1991.
  3. P. C. Hsiau and S. L. Lo, “Extractabilities of heavy metals in chemically-fixed sewage sludges,” Journal of Hazardous Materials, vol. 58, no. 1–3, pp. 73–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ødegaard, B. Paulsrud, and I. Karlsson, “Wastewater sludge as a resource: sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater sludge,” Water Science and Technology, vol. 46, no. 10, pp. 295–303, 2002. View at Scopus
  5. Y. J. Park and J. Heo, “Vitrification of fly ash from municipal solid waste incinerator,” Journal of Hazardous Materials, vol. 91, no. 1–3, pp. 83–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Casado-Vela, S. Sellés, J. Navarro et al., “Evaluation of composted sewage sludge as nutritional source for horticultural soils,” Waste Management, vol. 26, no. 9, pp. 946–952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Malliou, M. Katsioti, A. Georgiadis, and A. Katsiri, “Properties of stabilized/solidified admixtures of cement and sewage sludge,” Cement and Concrete Composites, vol. 29, no. 1, pp. 55–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Feenestra, J. P. Brouwer, J. Frenay, and S. Bos, “Re-use of contaminated dredging sludge in a cement bound road base: full-scale demonstration project,” in Proceedings of the 5TH International Conference on the Environmental and Technical Implications of Construction with Alternative Materials (Wascon'03), p. 593, Iscowa-Inasmet, San Sebastian, Spain, 2003.
  9. S. Valls, A. Yagüe, E. Vázquez, and C. Mariscal, “Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plant,” Cement and Concrete Research, vol. 34, no. 12, pp. 2203–2208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Tay, “Bricks manufactured from sludge,” Journal of the Environmental Engineering Division, vol. 113, p. 270, 1987.
  11. R. B. Dean and M. J. Suess, “The risk to health of chemicals in sewage sludge applied to land,” Waste Management and Research, vol. 3, no. 3, pp. 251–278, 1985. View at Scopus
  12. O. Malerius and J. Werther, “Modeling the adsorption of mercury in the flue gas of sewage sludge incineration,” Chemical Engineering Journal, vol. 96, no. 1–3, pp. 197–205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Hjelmar, “Disposal strategies for municipal solid waste incineration residues,” Journal of Hazardous Materials, vol. 47, no. 1–3, pp. 345–368, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Khiari, F. Marias, F. Zagrouba, and J. Vaxelaire, “Analytical study of the pyrolysis process in a wastewater treatment pilot station,” Desalination, vol. 167, no. 1–3, pp. 39–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. M. Bierman and C. J. Rosen, “Phosphate and trace metal availability from sewage-sludge incinerator ash,” Journal of Environmental Quality, vol. 23, no. 4, pp. 822–830, 1994. View at Scopus
  16. M. T. Ali and W. F. Chang, “Strength properties of cement-stabilized municipal solid waste incinerator ash masonry bricks,” ACI Materials Journal, vol. 91, no. 3, pp. 256–263, 1994. View at Scopus
  17. J. Monzó, J. Paya, M. V. Borrachero, and A. Córcoles, “Use of sewage sludge ash(SSA)-cement admixtures in mortars,” Cement and Concrete Research, vol. 26, no. 9, pp. 1389–1398, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Tay, W. K. Yip, and K. Y. Show, “Clay-blended sludge as lightweight aggregate concrete material,” Journal of Environmental Engineering, vol. 117, no. 6, pp. 834–844, 1991. View at Scopus
  19. M. Anderson, R. G. Skerratt, J. P. Thomas, and S. D. Clay, “Case study involving using fluidised bed incinerator sludge ash as a partial clay substitute in brick manufacture,” Water Science and Technology, vol. 34, no. 3-4, pp. 507–515, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Al Sayed, I. M. Madany, and A. R. M. Buali, “Use of sewage sludge ash in asphaltic paving mixes in hot regions,” Construction and Building Materials, vol. 9, no. 1, pp. 19–23, 1995. View at Scopus
  21. A. M. Dunster, “Incinerated sewage sludge ash (ISSA) in autoclaved aerated concrete (AAC),” Characterization of Mineral Wastes, Resources and Processing Technologies - Integrated Waste Management For the Production of Construction Material WRT 177/WR0115, 2007.
  22. K. S. Wang, I. J. Chiou, C. H. Chen, and D. Wang, “Lightweight properties and pore structure of foamed material made from sewage sludge ash,” Construction and Building Materials, vol. 19, no. 8, pp. 627–633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Devant, J. A. Cusidó, and C. Soriano, “Custom formulation of red ceramics with clay, sewage sludge and forest waste,” Applied Clay Science, vol. 53, p. 669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Pan, C. Huang, J. J. Kuo, and S. H. Lin, “Recycling MSWI bottom and fly ash as raw materials for Portland cement,” Waste Management, vol. 28, no. 7, pp. 1113–1118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Chen and D. F. Lin, “Stabilization treatment of soft subgrade soil by sewage sludge ash and cement,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 321–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Cyr, M. Coutand, and P. Clastres, “Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials,” Cement and Concrete Research, vol. 37, no. 8, pp. 1278–1289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. S. Shi and L. L. Kan, “Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 750–754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Monzó, J. Payá, M. V. Borrachero, and E. Peris-Mora, “Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content,” Cement and Concrete Research, vol. 29, no. 1, pp. 87–94, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. C. M. A. Fontes, M. C. Barbosa, R. D. T. Filho, and J. P. Goncalves, “Potentiality of sewage sludge ash as mineral additive in cement mortar and high performance concrete,” in Proceedings of the International RILEM Conference on the Use of Recycled Materials in Buildings and Structures, p. 797, Barcelona, Spain, 2004.
  30. J. H. Tay and K. Y. Show, “Municipal wastewater sludge as cementitious and blended cement materials,” Cement and Concrete Composites, vol. 16, no. 1, pp. 39–48, 1994. View at Scopus
  31. J. Payá, J. Monzó, M. V. Borrachero et al., “Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: Silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash,” Journal of Chemical Technology and Biotechnology, vol. 77, no. 3, pp. 331–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. S. Wang, Y. S. Chang, K. Lin, and Z. Q. Huang, “The sintering characteristics of incinerator residues form municipal sewage sludge,” in Proceedings of the 9th Annual Meeting Sanitary Engineering, p. 211, Taipei, Taiwan, 1999.
  33. S. C. Pan, D. H. Tseng, C. C. Lee, and C. Lee, “Influence of the fineness of sewage sludge ash on the mortar properties,” Cement and Concrete Research, vol. 33, no. 11, pp. 1749–1754, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Donatello, A. Freeman-Pask, M. Tyrer, and C. R. Cheeseman, “Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash,” Cement and Concrete Composites, vol. 32, no. 1, pp. 54–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. H. Chen, I. J. Chiou, and K. S. Wang, “Sintering effect on cement bonded sewage sludge ash,” Cement and Concrete Composites, vol. 28, no. 1, pp. 26–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Garcés, M. Pérez Carrión, E. García-Alcocel, J. Payá, J. Monzó, and M. V. Borrachero, “Mechanical and physical properties of cement blended with sewage sludge ash,” Waste Management, vol. 28, no. 12, pp. 2495–2502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. H. Zeng, S. Z. Pan, and Li, “The study of the characteristics of sewage sludge ash and the development of reclamation techniques,” in Proceedings of the 12th Annual Meeting Sanitary Engineering, p. 221, Taipei, Taiwan, 2002.
  38. T. Perraki, G. Kakali, and F. Kontoleon, “The effect of natural zeolites on the early hydration of Portland cement,” Microporous and Mesoporous Materials, vol. 61, no. 1–3, pp. 205–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. ASTM designation, “Standard specification for coal fly ash and raw or calcined natural pozzolana for use as a mineral admixture in concrete,” Annual Book of ASTM Standards C 618-89, 1998.
  40. T. Karayildirim, J. Yanik, M. Yuksel, and H. Bockhorn, “Characterisation of products from pyrolysis of waste sludges,” Fuel, vol. 85, no. 10-11, pp. 1498–1508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Z. LeGeros and J. P. LeGeros, “Dense hydroxyapatite,” in An Introduction To Bioceramics, L. L. Hench and J. Wilson, Eds., p. 139, World Scientific, Singapore, 1993.
  42. K. Baltakys, R. Jauberthie, R. Siauciunas, and R. Kaminskas, “Influence of modification of SiO2 on the formation of calcium silicate hydrate,” Materials Science, vol. 25, no. 3, pp. 663–670, 2007. View at Scopus
  43. J. A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths, London, UK, 3rd edition, 1975.
  44. Y. Ping, R. J. Kirkpatrick, P. Brent, P. F. McMillan, and X. Cong, “Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 742–748, 1999. View at Scopus
  45. J. Zhang and G. W. Scherer, “Comparison of methods for arresting hydration of cement,” Cement and Concrete Research, vol. 41, no. 10, pp. 1024–1036, 2011. View at Publisher · View at Google Scholar · View at Scopus