About this Journal Submit a Manuscript Table of Contents
ISRN Spectroscopy
Volume 2012 (2012), Article ID 487040, 4 pages
http://dx.doi.org/10.5402/2012/487040
Research Article

Honey Discrimination Using Visible and Near-Infrared Spectroscopy

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310032, China

Received 24 August 2012; Accepted 9 October 2012

Academic Editors: R. Fausto, J. Ghasemi, and H. C. Goicoechea

Copyright © 2012 Yun Li and Haiqing Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Kilicoglu, K. Kismet, S. S. Kilicoglu et al., “Effects of honey as a scolicidal agent on the hepatobiliary system,” World Journal of Gastroenterology, vol. 14, no. 13, pp. 2085–2088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Chen, J. Zhao, M. Liu, and J. Cai, “Nondestructive identification of tea (Camellia sinensis L.) varieties using FT-NIR spectroscopy and pattern recognition,” Czech Journal of Food Sciences, vol. 26, no. 5, pp. 360–367, 2008. View at Scopus
  3. G. Lv and H. Yang, “Discrimination of different brands of Nescafé coffee using vis-NIR spectroscopy and comparative study,” Advances in Biochemical Engineering, vol. 1-2, pp. 163–166, 2011.
  4. R. M. Balabin and S. V. Smirnov, “Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder,” Talanta, vol. 85, no. 1, pp. 562–568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Sinelli, L. Cerretani, V. D. Egidio, A. Bendini, and E. Casiraghi, “Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity,” Food Research International, vol. 43, no. 1, pp. 369–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Yang, B. Kuang, and A. M. Mouazen, “In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum) fruits using fiber-optic visible-near-infrared (vis-NIR) spectroscopy,” Applied Spectroscopy, vol. 65, no. 8, pp. 931–938, 2011. View at Publisher · View at Google Scholar
  7. H. Yang, B. Kuang, and A. M. Mouazen, “Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction,” European Journal of Soil Science, vol. 63, no. 3, pp. 410–420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Gallardo-Velázquez, G. Osorio-Revilla, M. Z. D. Loa, and Y. Rivera-Espinoza, “Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys,” Food Research International, vol. 42, no. 3, pp. 313–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zhu, S. Li, Y. Shan et al., “Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics,” Journal of Food Engineering, vol. 101, no. 1, pp. 92–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yang, P. Nie, H. Yang, and Y. He, “Rapid recognition method of nectar plant based on visible-near infrared spectroscopy,” Transactions of the Chinese Society of Agricultural Engineering, vol. 26, no. 3, pp. 238–242, 2010 (Chinese). View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Reed, D. Devlin, S. R. R. Esteves, R. Dinsdale, and A. J. Guwy, “Performance parameter prediction for sewage sludge digesters using reflectance FT-NIR spectroscopy,” Water Research, vol. 45, no. 8, pp. 2463–2472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines,” Microchemical Journal, vol. 98, no. 1, pp. 121–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Noori, A. R. Karbassi, A. Moghaddamnia et al., “Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction,” Journal of Hydrology, vol. 401, no. 3-4, pp. 177–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Kim, B. L. Drake, and H. Park, “Multiclass classifiers based on dimension reduction with generalized LDA,” Pattern Recognition, vol. 40, no. 11, pp. 2939–2945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques,” Analytica Chimica Acta, vol. 671, no. 1-2, pp. 27–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. C. Kim, D. Kim, and S. Y. Bang, “Extensions of LDA by PCA mixture model and class-wise features,” Pattern Recognition, vol. 36, no. 5, pp. 1095–1105, 2003. View at Publisher · View at Google Scholar · View at Scopus