About this Journal Submit a Manuscript Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 532168, 8 pages
http://dx.doi.org/10.5402/2012/532168
Research Article

Electrochemical Synthesis of Nanocrystalline Ni0.5Zn0.5Fe2O4 Thin Film from Aqueous Sulfate Bath

1Mineral Processing Technology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
2Advanced Materials Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt

Received 29 December 2011; Accepted 22 February 2012

Academic Editors: J. Blázquez, J.-H. Chang, G. Maruccio, and C.-S. Yeh

Copyright © 2012 A. Saba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Shan, R. Gang, Z. Feng, et al., “Preparation, microstructure and magnetic properties of Ni-Zn ferrite thin films by spin spray plating,” Journal of Wuhan University of Technology, vol. 23, no. 5, pp. 708–711, 2008. View at Publisher · View at Google Scholar
  2. L. Wang and F. S. Li, “Mössbauer study of nanocrystalline Ni-Zn ferrite,” Journal of Magnetism and Magnetic Materials, vol. 223, no. 3, pp. 233–237, 2001.
  3. A. M. El-Sayed, “Effect of chromium substitutions on some properties of Ni-Zn ferrites,” Ceramics International, vol. 28, no. 6, pp. 651–655, 2002.
  4. J. L. Gunjakar, A. M. More, K. V. Gurav, and C. D. Lokhande, “Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets,” Applied Surface Science, vol. 254, no. 18, pp. 5844–5848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. Horvath, “Microwave applications of soft ferrites,” Journal of Magnetism and Magnetic Materials, vol. 215, pp. 171–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. Lane, P. J. Wright, M. J. Crosbie et al., “Liquid injection metal organic chemical vapour deposition of nickel zinc ferrite thin films,” Journal of Crystal Growth, vol. 192, no. 3-4, pp. 423–429, 1998. View at Scopus
  7. S. D. Sartale, C. D. Lokhande, M. Giersig, and V. Ganesan, “Novel electrochemical process for the deposition of nanocrystalline NiFe2O4 thin films,” Journal of Physics Condensed Matter, vol. 16, no. 6, pp. 773–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Tao, S. B. Desu, and T. K. Li, “Direct liquid injection MOCVD of high quality PLZT films,” Materials Letters, vol. 23, no. 4–6, pp. 177–180, 1995.
  9. M. Sedla, V. M. Jeca, T. Grygarb, et al., “Sol-gel processing and magnetic properties of nickel zinc ferrite thick films,” Ceramics International, vol. 26, no. 5, pp. 507–512, 2000.
  10. S. M. Chavana, M. K. Babrekarc, S. S. Moreb, and K. M. Jadhav, “Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films,” Journal of Alloys and Compounds, vol. 507, no. 1, pp. 21–25, 2010.
  11. D. Ravinder, K. Vijay Kumar, and A. V. Ramana Reddy, “Preparation and magnetic properties of Ni-Zn ferrite thin films,” Materials Letters, vol. 57, no. 26-27, pp. 4162–4164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. D. Sartale, G. D. Bagde, C. D. Lokhande, and M. Giersig, “Room temperature synthesis of nanocrystalline ferrite (MFe2O4, M = Cu, Co and Ni) thin films using novel electrochemical route,” Applied Surface Science, vol. 182, no. 3-4, pp. 366–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. E. Saba, E. M. Elsayed, M. M. Moharam, M. M. Rashad, and R. M. Abou-Shahba, “Structure and magnetic properties of Ni x Zn1-x Fe2O4 thin films prepared through electrodeposition method,” Journal of Materials Science, vol. 46, no. 10, pp. 3574–3582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. N. Nuli and Q. Z. Qin, “Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries,” Journal of Power Sources, vol. 142, no. 1-2, pp. 292–297, 2005.
  15. I. Zhitomirsky, A. Petric, and M. Niewczas, “Nanostructured ceramic and hybrid materials via electrodeposition,” Journal of the Minerals Metals & Materials Society, vol. 54, no. 9, pp. 31–34, 2002. View at Scopus
  16. S. Bijani, M. Gabs, L. Martínez, J. R. Ramos-Barrado, J. Morales, and L. Sánchez, “Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries,” Thin Solid Films, vol. 515, no. 13, pp. 5505–5511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. H. Wang, K. W. Cheng, and C. J. Tseng, “Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 453–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. Ballesteros, P. Díaz-Arista, Y. Meas, R. Ortega, and G. Trejo, “Zinc electrodeposition in the presence of polyethylene glycol 20000,” Electrochimica Acta, vol. 52, no. 11, pp. 3686–3696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. O. Pagotto, C. M. De Alvarenga Freire, and M. Ballester, “Zn-Ni alloy deposits obtained by continuous and pulsed electrodeposition processes,” Surface and Coatings Technology, vol. 122, no. 1, pp. 10–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. K. M. Yin and B. T. Lin, “Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel,” Surface and Coatings Technology, vol. 78, no. 1–3, pp. 205–210, 1996.
  21. A. I. Inamdar, S. H. Mujawar, S. B. Sadale et al., “Electrodeposited zinc oxide thin films: nucleation and growth mechanism,” Solar Energy Materials and Solar Cells, vol. 91, no. 10, pp. 864–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. D. Sartale, C. D. Lokhande, and M. Muller, “Electrochemical synthesis of nanocrystalline CuFe2O4 thin films from non-aqueous (ethylene glycol) medium,” Materials Chemistry and Physics, vol. 80, no. 1, pp. 120–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. C. D. Lokhande, S. S. Kulkarni, R. S. Mane, and S. H. Han, “Copper ferrite thin films: single-step non-aqueous growth and properties,” Journal of Crystal Growth, vol. 303, no. 2, pp. 387–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. Rashad, E. M. Elsayed, M. M. Moharam, R. M. Abou-Shahba, and A. E. Saba, “Structure and magnetic properties of NixZn1-xFe2O4 nanoparticles prepared through co-precipitation method,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. 759–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. W. Wang and S. C. Kung, “Crystallization of nano-sized Ni-Zn ferrite powders prepared by hydrothermal method,” Journal of Magnetism and Magnetic Materials, vol. 270, pp. 230–236, 2004.