About this Journal Submit a Manuscript Table of Contents
ISRN Optics
Volume 2012 (2012), Article ID 536209, 7 pages
http://dx.doi.org/10.5402/2012/536209
Research Article

FDTD Modeling of a Cloak with a Nondiagonal Permittivity Tensor

Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Received 13 February 2012; Accepted 27 March 2012

Academic Editors: A. Danner, M. Midrio, and A. Tervonen

Copyright © 2012 Naoki Okada and James B. Cole. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell's equations,” Photonics and Nanostructures Fundamentals and Applications, vol. 6, no. 1, pp. 87–95, 2007. View at Publisher · View at Google Scholar
  3. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Applied Physics Letters, vol. 90, no. 24, Article ID 241105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Optics Express, vol. 16, no. 23, pp. 18731–18738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Luo, J. Zhang, B. I. Wu, and H. Chen, “Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator,” Physical Review B, vol. 78, no. 12, Article ID 125108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Zhai, Y. Zhou, J. Zhou, and D. Liu, “Polarization controller based on embedded optical transformation,” Optics Express, vol. 17, no. 20, pp. 17206–17213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Optics Express, vol. 16, no. 15, pp. 11555–11567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Physical Review Letters, vol. 100, no. 6, Article ID 063903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Lan, W. Wei, C. Jianhua, D. Chunlei, and L. Xiangang, “Design of electromagnetic refractor and phase transformer using coordinate transformation theory,” Optics Express, vol. 16, no. 10, pp. 6815–6821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Letters, vol. 8, no. 12, pp. 4243–4247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New Journal of Physics, vol. 10, Article ID 115023, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Cylindrical-to-plane-wave conver,” Physics Letters, vol. 92, no. 26, Article ID 261903, 2008.
  13. Y. Lai, J. Ng, H. Chen et al., “Illusion optics: the optical transformation of an object into another object,” Physical Review Letters, vol. 102, no. 25, Article ID 253902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. W. X. Jiang and T. J. Cui, “Moving targets virtually via composite optical transformation,” Optics Express, vol. 18, no. 5, pp. 5161–5167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Materials, vol. 9, no. 5, pp. 387–396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Applied Physics Letters, vol. 95, no. 4, Article ID 041106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nature Physics, vol. 5, no. 9, pp. 687–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Kanté, D. Germain, and A. De Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Physical Review B, vol. 80, no. 20, Article ID 201104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science, vol. 323, no. 5912, pp. 366–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Materials, vol. 8, no. 8, pp. 639–642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nature Communications, vol. 1, article 21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science, vol. 328, no. 5976, pp. 337–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nature Communications, vol. 2, article 176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Optics Express, vol. 19, no. 9, pp. 8625–8631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, 1966.
  27. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwell's equations,” IEEE Transactions on Microwave Theory and Techniques, vol. 23, no. 8, pp. 623–630, 1975. View at Scopus
  28. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Transactions on Electromagnetic Compatibility, vol. 22, no. 3, pp. 191–202, 1980. View at Scopus
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, Mass, USA, 3rd edition, 2005.
  30. E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Physical Review A, vol. 79, no. 6, Article ID 063825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Optics Express, vol. 16, no. 9, pp. 6717–6730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications, Artech House, Norwood, Mass, USA, 1st edition, 2008.
  33. J. A. Silva-Macědo, M. A. Romero, and B. H. V. Borges, “An extended FDTD method for the analysis of electromagnetic field rotations and cloaking devices,” Progress in Electromagnetics Research, vol. 87, pp. 183–196, 2008. View at Scopus
  34. C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 5, pp. 1432–1441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Optics Express, vol. 17, no. 10, pp. 8467–8475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Physical Review E, vol. 81, no. 1, Article ID 016611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” Journal of the Optical Society of America B, vol. 27, no. 10, pp. 2020–2025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Argyropoulos, E. Kallos, and Y. Hao, “Bandwidth evaluation of dispersive transformation electromagnetics based devices,” Applied Physics A, vol. 103, no. 3, pp. 715–719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. U. Leonhardt and T. G. Philbin, “Chapter 2 transformation optics and the geometry of light,” Progress in Optics, vol. 53, pp. 69–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Analyzingthe stability of the FDTD technique by combining the von neumann method with the Routh-Hurwitz criterion,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 2, pp. 377–381, 2001. View at Scopus
  41. G. V. Eleftheriades and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE Press, New York, NY, USA, 1st edition, 2005.
  42. S. A. Tretyakov and S. I. Maslovski, “Veselago materials: what is possible and impossible about the dispersion of the constitutive parameters,” IEEE Antennas and Propagation Magazine, vol. 49, no. 1, pp. 37–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Applied Physics Letters, vol. 92, no. 3, Article ID 031111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Lin and L. Thylén, “On the accuracy and stability of several widely used FDTD approaches for modeling lorentz dielectrics,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 3378–3381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Physical Review A, vol. 77, no. 1, Article ID 013825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Cojocaru, “Exact analytical approaches for elliptic cylindrical invisibility cloaks,” Journal of the Optical Society of America B, vol. 26, no. 5, pp. 1119–1128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” Journal of Physics D, vol. 41, no. 8, Article ID 085504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, New York, NY, USA, 1st edition, 2009.
  49. F. B. Hildebrand, Introduction to Numerical Analysis, Dover Publications, New York, NY, USA, 2nd edition, 1987.
  50. Y. Zhao, P. A. Belov, and Y. Hao, “Modelling of wave propagation in wire media using spatially dispersive finite-difference time-domain method: numerical aspects,” IEEE Transactions on Antennas and Propagation I, vol. 55, no. 6, pp. 1506–1513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, New York, NY, USA, 1st edition, 1993.