About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2012 (2012), Article ID 570394, 12 pages
http://dx.doi.org/10.5402/2012/570394
Research Article

Theoretical Study of Hydrogen Bond Formation in Trimethylene Glycol-Water Complex

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, Kharagpur 721302, India

Received 30 August 2012; Accepted 18 September 2012

Academic Editors: J. G. Han, T. Kar, and A. Vergara

Copyright © 2012 Snehanshu Pal and T. K. Kundu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Schuster and P. Wolschann, “Hydrogen bonding: from small clusters to biopolymers,” Monatshefte fur Chemie, vol. 130, no. 8, pp. 947–960, 1999. View at Scopus
  2. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, NY, USA, 1997.
  3. A. Demirbas, Methane Gas Hydrate, Springer, London, UK, 2010.
  4. T. S. Collett, “Energy resource potential of natural gas hydrates,” AAPG Bulletin, vol. 86, no. 11, pp. 1971–1992, 2002. View at Scopus
  5. P. Englezos, “Clathrate hydrates,” Industrial and Engineering Chemistry Research, vol. 32, no. 7, pp. 1251–1274, 1993. View at Scopus
  6. E. G. Hammerscht, “Formation of gas hydrates in natural gas transmission lines,” Industrial & Engineering Chemistry Research, vol. 26, no. 8, pp. 851–855, 1984.
  7. J. K. Fink, Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, Elsevier, Oxford, UK, 2012.
  8. A. Wehner, R. Miller, G. Fenyvesi, J. W. DeSalvo, and M. Joerger, “Heat transfer compositions comprising renewable-based biodegradable 1, 3-propanediol,” US patent 2007/0200088 A1, 2007.
  9. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Weinheim, Germany, 2005.
  10. S. J. Grabowski, T. L. Robinson, and J. Leszczynski, “Strong dihydrogen bonds—Ab initio and atoms in molecules study,” Chemical Physics Letters, vol. 386, no. 1–3, pp. 44–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Wojtulewski and S. J. Grabowski, “DFT and AIM studies on two-ring resonance assisted hydrogen bonds,” Journal of Molecular Structure, vol. 621, no. 3, pp. 285–291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Pal and T. K. Kundu, “Dodecahedron methane hydrate cage structure—an Ab initio study,” Journal of Petroleum Engineering and Technology, vol. 2, pp. 22–35, 2012.
  13. D. Peeters, “Hydrogen bonds in small water clusters: a theoretical point of view,” Journal of Molecular Liquids, vol. 67, pp. 49–61, 1995. View at Scopus
  14. X. M. Zhou, Z. Y. Zhou, H. Fu, Y. Shi, and H. Zhang, “Density functional complete study of hydrogen bonding between the dichlorine monoxide and the hydroxyl radical (Cl2O·HO),” Journal of Molecular Structure, vol. 714, no. 1, pp. 7–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. K. Sahu, A. Chaudhari, and S. L. Lee, “Theoretical investigation for the hydrogen bond interaction in THF-water complex,” Chemical Physics Letters, vol. 386, no. 4–6, pp. 351–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. K. Sahu and S. L. Lee, “Hydrogen-bond interaction in 1:1 complexes of tetrahydrofuran with water, hydrogen fluoride, and ammonia: a theoretical study,” Journal of Chemical Physics, vol. 123, no. 4, Article ID 044308, 9 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Mandal, M. Prakash, R. M. Kumar, R. Parthasarathi, and V. Subramanian, “Ab Initio and DFT studies on methanol-water clusters,” Journal of Physical Chemistry A, vol. 114, no. 6, pp. 2250–2258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. E. Del Bene, “An ab initio study of the structures and enthalpies of the hydrogen-bonded complexes of the acids H2O, H2S, HCN, and HCl with the anions OH-, SH-, CN-, and Cl-,” Structural Chemistry, vol. 1, no. 1, pp. 19–27, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Alkorta, F. Blanco, P. M. Deyà et al., “Cooperativity in multiple unusual weak bonds,” Theoretical Chemistry Accounts, vol. 126, no. 1, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Mata, E. Molins, I. Alkorta, and E. Espinosa, “Topological properties of the electrostatic potential in weak and moderate NH hydrogen bonds,” Journal of Physical Chemistry A, vol. 111, no. 28, pp. 6425–6433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. B. Levy, N. H. Martin, I. Hargittai, and M. Hargittai, “Intra- and intermolecular hydrogen bonding in 2-phosphinylphenol: a quantum chemical study,” Journal of Physical Chemistry A, vol. 102, no. 1, pp. 274–279, 1998. View at Scopus
  22. O. V. Shishkin, I. S. Konovalova, L. Gorb, and J. Leszczynski, “Novel type of mixed O-HN/O-Hπ hydrogen bonds: monohydrate of pyridine,” Structural Chemistry, vol. 20, no. 1, pp. 37–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Horváth, A. Kovács, and I. Hargittai, “Structural aspects of donor-acceptor interactions,” Journal of Physical Chemistry A, vol. 107, no. 8, pp. 1197–1202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. C. J. Roothaan, “New developments in molecular orbital theory,” Reviews of Modern Physics, vol. 23, no. 2, pp. 69–89, 1951. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Head-Gordon, J. A. Pople, and M. J. Frisch, “MP2 energy evaluation by direct methods,” Chemical Physics Letters, vol. 153, no. 6, pp. 503–506, 1988. View at Scopus
  26. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3, pp. B864–B871, 1964. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Grimme, “Accurate description of van der Waals complexes by density functional theory including empirical corrections,” Journal of Computational Chemistry, vol. 25, no. 12, pp. 1463–1473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar · View at Scopus
  31. J. D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections,” Physical Chemistry Chemical Physics, vol. 10, no. 44, pp. 6615–6620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theoretical Chemistry Accounts, vol. 120, no. 1–3, pp. 215–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. P. C. Hariharan and J. A. Pople, “The influence of polarization functions on molecular orbital hydrogenation energies,” Theoretica Chimica Acta, vol. 28, no. 3, pp. 213–222, 1973. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Chandrasekhar, J. G. Andrade, and P. Von Ragué Schleyer, “Efficient and accurate calculation of anion proton affinities,” Journal of the American Chemical Society, vol. 103, no. 18, pp. 5609–5612, 1981. View at Scopus
  35. M. S. Gordon and J. H. Jensen, “Understanding the hydrogen bond using quantum chemistry,” Accounts of Chemical Research, vol. 29, no. 11, pp. 536–543, 1996. View at Scopus
  36. S. F. Boys and F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Molecular Physics, vol. 19, no. 4, pp. 553–566, 1970.
  37. F. Weinhold and C. R. Landis, “Natural bond orbitals and extensions of localized bonding concepts,” Chemistry Education Research and Practice, vol. 2, pp. 91–104, 2001.
  38. E. D. Gledening, A. E. Reed, J. A. Carpenter, and F. Weinhold, NBO. version 3.1.
  39. A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint,” Chemical Reviews, vol. 88, no. 6, pp. 899–926, 1988. View at Scopus
  40. A. Y. Li, “Chemical origin of blue- and red shifted hydrogen bonds: intra-molecular hyper-conjugation and its coupling with intermolecular hyper-conjugation,” Journal of Chemical Physics, vol. 126, pp. 154102–154111, 2007.
  41. R. F. W. Bader, “Atoms in molecules,” Accounts of Chemical Research, vol. 18, pp. 9–15, 1985.
  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., “Gaussian 09, Revision (B.01),” Gaussian Inc., Wallingford CT, 2010.
  43. I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, “Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries,” Journal of Chemical Theory and Computation, vol. 6, no. 9, pp. 2872–2887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Civalleri, C. M. Zicovich-Wilson, L. Valenzano, and P. Ugliengo, “B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals,” CrystEngComm, vol. 10, no. 4, pp. 405–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. E. Lutskii and N. I. Gorokhova, “Intramolecular hydrogen bonds and molecular dipole moments,” Theoretical and Experimental Chemistry, vol. 4, no. 6, pp. 532–534, 1971. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Umeyama and K. Morokuma, “Origin of alkyl substituent effect in the proton affinity of amines, alcohols, and ethers,” Journal of the American Chemical Society, vol. 98, no. 15, pp. 4400–4404, 1976. View at Scopus
  47. H. Umeyama and K. Morokuma, “The origin of hydrogen bonding. An energy decomposition study,” Journal of the American Chemical Society, vol. 99, no. 5, pp. 1316–1332, 1977. View at Scopus
  48. A. Van der Vaart and K. M. Merz Jr., “Charge transfer in small hydrogen bonded clusters,” Journal of Chemical Physics, vol. 116, no. 17, pp. 7380–7388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. S. J. Grabowski, Hydrogen Bonding-New Insights, Springer, Dordrecht, The Netherlands, 2006.