About this Journal Submit a Manuscript Table of Contents
ISRN Thermodynamics
Volume 2012 (2012), Article ID 614086, 5 pages
http://dx.doi.org/10.5402/2012/614086
Research Article

On the Thermal Effusivity of Bovine Milk

Applied Physics Department (APL), Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil

Received 31 October 2012; Accepted 25 November 2012

Academic Editors: J. K. Brennan, C. D. Daub, H. Hirao, and P. Trens

Copyright © 2012 Daniel Acosta-Avalos and Daniel Soares Velasco. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Marín, “Thermal physics concepts: the role of thermal effusivity,” Physics Teacher, vol. 44, pp. 432–434, 2006.
  2. M. A. Wattiaux, Milk Composition and Nutritional Value. Dairy Essentials, 1994.
  3. K. E. Spells, “The thermal conductivities of some biological fluids,” Physics in Medicine and Biology, vol. 5, no. 2, article 304, pp. 139–153, 1960. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Bozikova, “Thermal conductivity and thermal diffusivity values of foods,” PTEP, vol. 13, pp. 274–279, 2009.
  5. M. Gustavsson and S. E. Gustafsson, “Thermal conductivity as an indicator of fat content in milk,” Thermochimica Acta, vol. 442, no. 1-2, pp. 1–5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Mandelis and P. Hess, Progress in Photothermal and Photoacoustic Science and Technology—Life and Earth Science, vol. 3, SPIE Optical Enginnering, Washington, DC, USA, 1997.
  7. A. Gijsbertsen, D. Bicanic, J. L. W. Gielen, and M. Chirtoc, “Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient,” Infrared Physics and Technology, vol. 45, no. 2, pp. 93–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Guo, D. Bicanic, R. Imhof, P. Xiao, and J. Harbinson, “Optothermal transient emission radiometry for studying the changes in epidermal hydration induced during ripening of tomato fruit mutants,” Applied Physics B, vol. 79, no. 6, pp. 793–797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Jiménez-Pérez, A. Cruz-Orea, P. Lomelí Mejia, and R. Gutierrez-Fuentes, “Monitoring the thermal parameters of different edible oils by using thermal lens spectrometry,” International Journal of Thermophysics, vol. 30, no. 4, pp. 1396–1399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” Journal of Applied Physics, vol. 47, no. 1, pp. 64–69, 1976. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Cesar, H. Vargas, C. A. S. Lima, J. Mendes Filho, and L. C. M. Miranda, “On the use of photoacoustic spectroscopy for investigating adulterated or altered powdered coffee samples,” Journal of Agricultural and Food Chemistry, vol. 32, no. 6, pp. 1355–1358, 1984. View at Scopus
  12. L. F. Perondi and L. C. M. Miranda, “Minimal-volume photoacoustic cell measurement of thermal diffusivity: effect of the thermoelastic sample bending,” Journal of Applied Physics, vol. 62, no. 7, pp. 2955–2959, 1987. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Dóka, J. Kispéter, and A. Lörincz, “Potential value of photoacoustic spectroscopy for determining iron content of milk protein concentrates,” Journal of Dairy Research, vol. 58, no. 4, pp. 453–460, 1991. View at Scopus
  14. O. Dóka, D. Bicanic, and R. Frankhuizen, “Photoacoustic study of heated binary mixtures containing whey and skimmed-milk powders,” European Food Research and Technology, vol. 208, no. 1, pp. 1–5, 1999. View at Scopus
  15. O. Dóka, D. D. Bicanic, M. H. Dicko, and M. A. Slingerland, “Photoacoustic approach to direct determination of the total phenolic content in red sorghum flours,” Journal of Agricultural and Food Chemistry, vol. 52, no. 8, pp. 2133–2136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Balderas-Lopez, D. Acosta-Avalos, J. J. Alvarado et al., “Photoacoustic measurements of transparent liquid samples: thermal effusivity,” Measurement Science and Technology, vol. 6, no. 8, article 011, pp. 1163–1168, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Szafner, D. Bicanic, and O. Dóka, “Effect of fat content on the thermal effusivity of foods: an inverse photopyroelectric study,” International Journal of Food Properties, vol. 14, no. 3, pp. 666–674, 2011. View at Publisher · View at Google Scholar · View at Scopus