About this Journal Submit a Manuscript Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 617214, 10 pages
http://dx.doi.org/10.5402/2012/617214
Research Article

Development of Quantum Simulator for Emerging Nanoelectronics Devices

Ho Chi Minh City University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam

Received 5 April 2012; Accepted 21 June 2012

Academic Editors: B. Coasne, G. A. Kachurin, D. K. Sarker, and D. Tsoukalas

Copyright © 2012 Dinh Sy Hien. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The International Technology Roadmap for Semiconductor, 2005.
  2. W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid State Electronics, vol. 32, no. 10, pp. 839–849, 1989. View at Scopus
  3. Y. Ohkura, “Quantum effects in Si n-MOS inversion layer at high substrate concentration,” Solid-State Electronics, vol. 33, no. 12, pp. 1581–1585, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. H. Juffermans, and H. Lifka, “Influence of high substrate doping levels on the threshold voltage and the mobility of deep-submicrometer MOSFETs,” IEEE Transactions on Electron Devices, vol. 39, no. 4, pp. 932–938, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. N. D. Arora and D. A. Antoniadis, “Capacitance modeling for deep submicron thin gate oxide MOSFETs,” in Proceedings of the European Solid State Devices Research Conference (ESSDERC '95), pp. 569–572, 1995.
  6. R. Rios, N. D. Arora, C. L. Huang, N. Khalil, J. Faricelli, and L. Gruber, “Physical compact MOSFET model, including quantum mechanical effects, for statistical circuit design applications,” in Proceedings of the International Electron Devices Meeting (IEDM '95), pp. 937–940, IEEE, December 1995. View at Scopus
  7. P. Vande Voorde, P. B. Griffin, Z. Yu, S. Y. Oh, and R. W. Dutton, “Accurate doping profile determination using TED/QM models extensible to sub-quarter micron nMOSFETs,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '96), pp. 811–814, IEEE, December 1996. View at Scopus
  8. M. G. Ancona and G. J. Iafrate, “Quantum correction to the equation of state of an electron gas in a semiconductor,” Physical Review B, vol. 39, no. 13, pp. 9536–9540, 1989. View at Publisher · View at Google Scholar · View at Scopus
  9. D. L. Woolard, M. A. Strocio, M. A. Litlejohn, R. J. Trew, and H. L. Grubin, “A new nonparabolic hydrodynamic model with quantum corrections,” in Computational Electronics: Semiconductor Transport and Device Simulation, pp. 59–62, Kluwer Academic Publishers, Boston, Mass, USA, 1991.
  10. J. R. Zhou and D. K. Ferry, “Simulation of ultra-small GaAs MESFET using quantum moment equations,” IEEE Transactions on Electron Devices, vol. 39, no. 3, pp. 473–478, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Kreskovsky and H. L. Grubin, “Electron transport using the quantum corrected hydrodynamic equations,” VLSI Design, vol. 3, no. 2, pp. 179–200, 1995. View at Scopus
  12. H. L. Grubin and J. P. Kreskovsky, “Quantum moment balance equations and resonant tunnelling structures,” Solid State Electronics, vol. 32, no. 12, pp. 1071–1075, 1989. View at Scopus
  13. K. Uchida, K. Matsuzawa, J. Koga, R. Ohba, S. I. Takagi, and A. Toriumi, “Analytical single-electron transistor (SET) model for design and analysis of realistic SET circuits,” Japanese Journal of Applied Physics, Part 1, vol. 39, no. 4, pp. 2321–2324, 2000. View at Scopus
  14. S. Mahapatra, A. M. Ionescu, and K. Banerjee, “A quasi-analytical SET model for few electron circuit simulation,” IEEE Electron Device Letters, vol. 23, no. 6, pp. 366–368, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Wasshuber, Computational Electronics, Springer, New York, NY, USA, 2002.
  16. R. H. Chen, A. N. Korotkov, and K. K. Likharev, “New logic family based on single-electron transistors,” in Proceedings of the 53rd Annual Device Research Conference Digest, pp. 44–45, June 1995. View at Scopus
  17. Y. S. Yu, J. H. Oh, S. W. Hawng, and D. Ahn, “Implementation of single electron circuit simulator by SPICE: KOSECSPICE,” in Proceedings of Asia Pacific Workshop: Fundamental Application Advanced Semiconductor Device, pp. 85–90, 2000.
  18. K. K. Likharev, “SETTRAN—a simulator for single lectron transistor,” http://hana.physics.sunysb.edu/set/software.
  19. H. Inokawa and Y. Takahashi, “A compact analytical model for asymmetric single-electron tunneling transistors,” IEEE Transactions on Electron Devices, vol. 50, no. 2, pp. 455–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, UK, 2005.
  21. D. S. Hien, H. L. Thu Thao, and L. H. Minh, “Modelling transport in single electron transistor,” Journal of Physics, vol. 187, Article ID 012060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  23. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, no. 6680, pp. 49–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, “Carbon nanotube electronics,” Proceedings of the IEEE, vol. 91, no. 11, pp. 1772–1783, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. P. L. McEuen, M. S. Fuhrer, and H. Park, “Single-walled carbon nanotube electronics,” IEEE Transactions on Nanotechnology, vol. 1, no. 1, pp. 78–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, “Carbon nanotubes as Schottky barrier transistors,” Physical Review Letters, vol. 89, no. 10, pp. 1068011–1068014, 2002. View at Scopus
  27. J. Guo, S. Datta, and M. Lundstrom, “A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors,” IEEE Transactions on Electron Devices, vol. 51, no. 2, pp. 172–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Saito, G. Dresselhaus, and M. S. Dresselhau, Physical Property of Carbon Nanotubes, Imperial Colledge Press, London, UK, 1998.
  29. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, “Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors,” Journal of Vacuum Science and Technology B, vol. 20, no. 6, pp. 2798–2801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, no. 6949, pp. 654–657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Marulanda, Carbon Nanotubes Applications on Electron Devices, Intech, 2011.
  32. D. S. Hien, N. T. Luong, T. T. Anh Tuan, and D. V. Nga, “Modeling of planar carbon nanotube field effect transistor and three dimensional simulation of current-voltage characteristics,” Journal of Physics, vol. 187, Article ID 012049, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. S. Hien, N. T. Luong, T. T. A. Tuan, and D. V. Nga, “3D simulation of coaxial carbon nanotube field effect transistor,” Journal of Physics, vol. 187, Article ID 012061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Aviram and M. A. Ratner, “Molecular rectifiers,” Chemical Physics Letters, vol. 29, no. 2, pp. 277–283, 1974. View at Publisher · View at Google Scholar
  35. D. S. Hien and H. H. Trung, “Modelling molecular field effect transistor using non-equilibrium Green function method,” Journal of Physics, vol. 187, Article ID 012087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. E. Lyshevsky, Nano and Molecular Electronics Handbook, CRC Press; Taylor & Francis, 2007.
  37. M. N. Baibich, J. M. Broto, A. Fert et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Physical Review Letters, vol. 61, no. 21, pp. 2472–2475, 1988. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Physical Review B, vol. 39, no. 7, pp. 4828–4830, 1989. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Daughton, J. Brown, E. Chen, R. Beech, A. Pohm, and W. Kude, “Magnetic field sensors using GMR multilayer,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4608–4610, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Applied Physics Letters, vol. 56, no. 7, pp. 665–667, 1990. View at Publisher · View at Google Scholar · View at Scopus