About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2012 (2012), Article ID 619251, 15 pages
http://dx.doi.org/10.5402/2012/619251
Review Article

Photoactivatable Fluorophores

Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA

Received 25 July 2012; Accepted 16 August 2012

Academic Editors: H. Pal and M. Sliwa

Copyright © 2012 Françisco M. Raymo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, NY, USA, 2006.
  2. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, New York, NY, USA, 2001.
  3. J. B. Pawley, Ed., Handbook of Biological Confocal Microscopy, Springer, New York, NY, USA, 2006.
  4. T. Förster, “Diabatic and adiabatic processes in photochemistry,” Pure and Applied Chemistry, vol. 24, no. 3, pp. 443–449, 1970.
  5. A. Zweig, “Photochemical generation of stable fluorescent compounds (photofluorescence),” Pure and Applied Chemistry, vol. 33, no. 2-3, pp. 389–410, 1973.
  6. G. A. Krafft, R. T. Cummings, and J. P. Dizio, “Fluorescence photoactivation and dissipation (FPD),” in Nucleocytoplasmic Transport, R. Peters and M. Trendelenburg, Eds., pp. 35–52, Springer, Berlin, Germany, 1986.
  7. T. J. Mitchison, K. E. Sawin, J. A. Theriot, K. Gee, and A. Mallavarapu, “Caged fluorescent probes,” Methods in Enzymology, vol. 291, pp. 63–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. A. P. Pelliccioli and J. Wirz, “Photoremovable protecting groups: reaction mechanisms and applications,” Photochemical and Photobiological Sciences, vol. 1, no. 7, pp. 441–458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Goeldner and and R. Givens, Eds., Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules, Wiley-VCH, Weinheim, Germany, 2005.
  10. L. M. Wysocki and and L. D. Davis, “Advances in the chemistry of small molecule fluorescent probes,” Current Opinion in Chemical Biology, vol. 15, no. 6, pp. 752–759, 2011.
  11. D. Puliti, D. Warther, C. Orange, A. Specht, and M. Goeldner, “Small photoactivatable molecules for controlled fluorescence activation in living cells,” Bioorganic and Medicinal Chemistry, vol. 19, no. 3, pp. 1023–1029, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. W.-H. Li and and G. Zheng, “Photoactivatable fluorophores and techniques for biological imaging applications,” Photochemical and Photobiological Sciences, vol. 11, no. 3, pp. 460–471, 2012.
  13. S. R. Adams and R. Y. Tsien, “Controlling cell chemistry with caged compounds,” Annual Review of Physiology, vol. 55, pp. 755–784, 1993. View at Scopus
  14. J. P. Y. Kao and S. R. Adams, “Photosensitive caged compounds: design, properties and biological applications,” in Optical Microscopy: Emerging Methods and Applications, B. Herman and and J. J. Lemasters, Eds., pp. 27–85, Academic Press, San Diego, Calif, USA, 1993.
  15. J. C. Politz, “Use of caged fluorochromes to track macromolecular movement in living cells,” Trends in Cell Biology, vol. 9, no. 7, pp. 284–287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. R. W. Dirks, C. Molenaar, and H. J. Tanke, “Methods for visualizing RNA processing and transport pathways in living cells,” Histochemistry and Cell Biology, vol. 115, no. 1, pp. 3–11, 2001. View at Scopus
  17. J. Lippincott-Schwartz, N. Altan-Bonnet, and G. H. Patterson, “Photobleaching and photoactivation: following protein dynamics in living cells,” Nature Reviews Molecular Cell Biology, vol. 4, pp. S7–S14, 2003. View at Scopus
  18. J. Lippincott-Schwartz and G. H. Patterson, “Development and use of fluorescent protein markers in living cells,” Science, vol. 300, no. 5616, pp. 87–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. V. Verkhusha and K. A. Lukyanov, “The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins,” Nature Biotechnology, vol. 22, no. 3, pp. 289–296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. N. C. Shaner, G. H. Patterson, and M. W. Davidson, “Advances in fluorescent protein technology,” Journal of Cell Science, vol. 120, no. 24, pp. 4247–4260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nature Methods, vol. 4, no. 8, pp. 619–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Manley, J. M. Gillette, and J. Lippincott-Schwartz, “Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics,” Methods in Enzymology, vol. 475, no. C, pp. 109–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Johnson and M. T. Z. Spence, The Molecular Probes Handbook—A Guide to Fluorescent Probes and Labeling Technologies, Life Technologies, Carlsbad, Calif, USA, 11th edition, 2010.
  24. Y. Xu, T. J. Melia, and D. T. Toomre, “Using light to see and control membrane traffic,” Current Opinion in Chemical Biology, vol. 15, pp. 822–830, 2011.
  25. S. W. Hell, “Toward fluorescence nanoscopy,” Nature Biotechnology, vol. 21, no. 11, pp. 1347–1355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Sauer, “Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9433–9434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. W. Hell, “Far-field optical nanoscopy,” Science, vol. 316, no. 5828, pp. 1153–1158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Current Opinion in Chemical Biology, vol. 12, no. 5, pp. 505–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nature Reviews Molecular Cell Biology, vol. 9, no. 12, pp. 929–943, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annual Review of Biochemistry, vol. 78, pp. 993–1016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Heilemann, P. Dedecker, J. Hofkens, and M. Sauer, “Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification,” Laser and Photonics Reviews, vol. 3, no. 1-2, pp. 180–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. T. Hess, T. J. Gould, M. Gunewardene, J. Bewersdorf, and M. D. Mason, “Ultrahigh resolution imaging of biomolecules by fluorescence photoactivation localization microscopy,” Methods in molecular biology (Clifton, N.J.), vol. 544, pp. 483–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. W. Hell, “Microscopy and its focal switch,” Nature Methods, vol. 6, no. 1, pp. 24–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Toomre and J. Bewersdorf, “A new wave of cellular imaging,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 285–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Vogelsang, C. Steinhauer, C. Forthmann et al., “Make them blink: probes for super-resolution microscopy,” ChemPhysChem, vol. 11, no. 12, pp. 2475–2490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods in Enzymology, vol. 475, no. C, pp. 27–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Fukaminato, “Single-molecule fluorescence photoswitching: design and synthesis of photoswitchable fluorescent molecules,” Journal of Photochemistry and Photobiology C, vol. 12, no. 3, pp. 177–208, 2011.
  38. J. Cusido, S. Impellizzeri, and F. M. Raymo, “Molecular strategies to read and write at the nanoscale with far-field optics,” Nanoscale, vol. 3, no. 1, pp. 59–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Van De Linde, S. Wolter, and M. Sauer, “Single-molecule photoswitching and localization,” Australian Journal of Chemistry, vol. 64, no. 5, pp. 503–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. C. Vaughan and X. Zhuang, “New fluorescent probes for super-resolution imaging,” Nature Biotechnology, vol. 29, no. 10, pp. 880–881, 2011.
  41. S. van de Linde, M. Heilemann, and M. Sauer, “Live-cell Super-resolution imaging with synthetic fluorophores,” Annual Reviews of Physical Chemistry, vol. 63, pp. 519–540, 2012.
  42. T. Ha and P. Tinnefeld, “Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging,” Annual Reviews of Physical Chemistry, vol. 63, pp. 595–617, 2012.
  43. J. A. Prescher and C. R. Bertozzi, “Chemistry in living systems,” Nature Chemical Biology, vol. 1, no. 1, pp. 13–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. I. N. Levine, Quantum Chemistry, Prentice Hall, Englewoods Cliffs, NJ, USA, 1991.
  45. N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science Book, Herndon, Va, USA, 2009.
  46. D. Warther, F. Bolze, J. Léonard et al., “Live-cell one- And two-photon uncaging of a far-red emitting acridinone fluorophore,” Journal of the American Chemical Society, vol. 132, no. 8, pp. 2585–2590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. R. T. Cummings and G. A. Krafft, “Photoactivable fluorophores. 1. Synthesis and photoactivation of o-nitrobenzyl-quenched fluorescent carbamates,” Tetrahedron Letters, vol. 29, no. 1, pp. 65–68, 1988. View at Scopus
  48. W. F. Veldhuyzen, Q. Nguyen, G. McMaster, and D. S. Lawrence, “A light-activated probe of intracellular protein kinase activity,” Journal of the American Chemical Society, vol. 125, no. 44, pp. 13358–13359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Kobayashi, T. Komatsu, M. Kamiya, et al., “Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins,” Journal of the American Chemical Society, vol. 134, no. 27, pp. 11153–11160, 2012.
  50. R. T. Cummings, J. P. DiZio, and G. A. Krafft, “Photoactivable fluorophores. 2. Synthesis and photoactivation of functionalized 3-aroyl-2-(2-furyl)-chromones,” Tetrahedron Letters, vol. 29, no. 1, pp. 69–72, 1988. View at Scopus
  51. Y. Zhao, Q. Zheng, K. Dakin, K. Xu, M. L. Martinez, and W. H. Li, “New caged Coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications,” Journal of the American Chemical Society, vol. 126, no. 14, pp. 4653–4663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Gagey, P. Neveu, and L. Jullien, “Two-photon uncaging with the efficient 3,5-dibromo-2,4-dihydroxycinnamic caging group,” Angewandte Chemie, vol. 46, no. 14, pp. 2467–2469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Orange, A. Specht, D. Puliti et al., “Synthesis and photochemical properties of a light-activated fluorophore to label His-tagged proteins,” Chemical Communications, no. 10, pp. 1217–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Gagey, M. Emond, P. Neveu et al., “Alcohol uncaging with fluorescence reporting: evaluation of o-acetoxyphenyl methyloxazolone precursors,” Organic Letters, vol. 10, no. 12, pp. 2341–2344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Zheng, L. Cochella, J. Liu, O. Hobert, and W. H. Li, “Temporal and spatial regulation of microRNA activity with photoactivatable cantimirs,” American Chemical Society Chemical Biology, vol. 6, no. 12, pp. 1332–1338, 2011.
  56. X.-Y. Duan, B.-C. Zhai, and Q.-H. Song, “Water-s o luble o-hydroxycinnamate as an efficient photoremovable protecting group of alcohols with fluorescence reporting,” Photochemical and Photobiological Sciences, vol. 11, no. 3, pp. 593–598, 2012.
  57. S. J. Lord, N. R. Conley, H. L. D. Lee et al., “A photoactivatable push-pull fluorophore for single-molecule imaging in live cells,” Journal of the American Chemical Society, vol. 130, no. 29, pp. 9204–9205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. S. J. Lord, N. R. Conley, H. L. D. Lee et al., “DCDHF fluorophores for single-molecule imaging in cells,” ChemPhysChem, vol. 10, no. 1, pp. 55–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. J. Lord, H. L. D. Lee, R. Samuel et al., “Azido push-pull fluorogens photoactivate to produce bright fluorescent labels,” Journal of Physical Chemistry B, vol. 114, no. 45, pp. 14157–14167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. G. A. Krafft, W. R. Sutton, and R. T. Cummings, “Photoactivable fluorophores. 3. Synthesis and photoactivation of fluorogenic difunctionalized fluoresceins,” Journal of the American Chemical Society, vol. 110, no. 1, pp. 301–303, 1988. View at Scopus
  61. T. J. Mitchison, “Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence,” Journal of Cell Biology, vol. 109, no. 2, pp. 637–652, 1989. View at Scopus
  62. J. P. Vincent and P. H. O'Farrell, “The state of engrailed expression is not clonally transmitted during early Drosophila development,” Cell, vol. 68, no. 5, pp. 923–931, 1992. View at Publisher · View at Google Scholar · View at Scopus
  63. J. P. Pellois, M. E. Hahn, and T. W. Muir, “Simultaneous triggering of protein activity and fluorescence,” Journal of the American Chemical Society, vol. 126, no. 23, pp. 7170–7171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Kobayashi, Y. Urano, M. Kamiya, T. Ueno, H. Kojima, and T. Nagano, “Highly activatable and rapidly releasable caged fluorescein derivatives,” Journal of the American Chemical Society, vol. 129, no. 21, pp. 6696–6697, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Zheng, Y. M. Guo, and W. H. Li, “Photoactivatable and water soluble FRET dyes with high uncaging cross section,” Journal of the American Chemical Society, vol. 129, no. 35, pp. 10616–10617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Maurel, S. Banala, T. Laroche, and K. Johnsson, “Photoactivatable and photoconvertible fluorescent probes for protein labeling,” ACS Chemical Biology, vol. 5, no. 5, pp. 507–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Yuan, W. Lin, Z. Cao, L. Long, and J. Song, “Photocontrollable analyte-responsive fluorescent probes: a photocaged copper-responsive fluorescence turn-on probe,” Chemistry, vol. 17, no. 2, pp. 689–696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. E. Vázquez, M. Nitz, J. Stehn, M. B. Yaffe, and B. Imperiali, “Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations,” Journal of the American Chemical Society, vol. 125, no. 34, pp. 10150–10151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” European Biophysics Journal, vol. 30, no. 8, pp. 588–604, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. Yu, L. Y. Ho, and Q. Lin, “Rapid, photoactivatable turn-on fluorescent probes based on an intramolecular photoclick reaction,” Journal of the American Chemical Society, vol. 133, no. 31, pp. 11912–11915, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. J. A. Theriot and T. J. Mitchison, “Actin microfilament dynamics in locomoting cells,” Nature, vol. 352, no. 6331, pp. 126–131, 1991. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Ottl, D. Gabriel, and G. Marriott, “Preparation and photoactivation of caged fluorophores and caged proteins using a new class of heterobifunctional, photocleavable cross-linking reagents,” Bioconjugate Chemistry, vol. 9, no. 2, pp. 143–151, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. K. R. Gee, E. S. Weinberg, and D. J. Kozlowski, “Caged Q-rhodamine dextran: a new photoactivated fluorescent tracer,” Bioorganic and Medicinal Chemistry Letters, vol. 11, no. 16, pp. 2181–2183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. V. N. Belov, C. A. Wurm, V. P. Boyarskiy, S. Jakobs, and S. W. Hell, “Rhodamines NN: a novel class of caged fluorescent dyes,” Angewandte Chemie, vol. 49, no. 20, pp. 3520–3523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. L. M. Wysocki, J. B. Grimm, A. N. Tkachuk, T. A. Brown, E. Betzig, and L. D. Lavis, “Facile and general synthesis of photoactivatable xanthene dyes,” Angewandte Chemie, vol. 50, no. 47, pp. 11206–11209, 2011.
  76. K. Kolmakov, C. Wurm, M. V. Sednev, M. L. Bossi, V. N. Belov, and S. W. Hell, “Masked red-emitting carbopyronine dyes with photosensitive 2-diazo-1-indanone caging group,” Photochemical and Photobiological Sciences, vol. 11, no. 3, pp. 522–532, 2012.
  77. J. R. R. Majjigapu, A. N. Kurchan, R. Kottani, T. P. Gustafson, and A. G. Kutateladze, “Release and report: a new photolabile caging system with a two-photon fluorescence reporting function,” Journal of the American Chemical Society, vol. 127, no. 36, pp. 12458–12459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. J. A. Blake, M. Lukeman, and J. C. Scaiano, “Photolabile protecting groups based on the singlet state photodecarboxylation of xanthone acetic acid,” Journal of the American Chemical Society, vol. 131, no. 11, pp. 4127–4135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. R. H. Pawle, V. Eastman, and S. W. Thomas III, “UV-induced fluorescence recovery and solubility modulation of photocaged conjugated oligomers,” Journal of Materials Chemistry, vol. 21, no. 36, pp. 14041–14047, 2011.
  80. G. Han, T. Mokari, C. Ajo-Franklin, and B. E. Cohen, “Caged quantum dots,” Journal of the American Chemical Society, vol. 130, no. 47, pp. 15811–15813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Impellizzeri, B. McCaughan, J. F. Callan, and F. M. Raymo, “Photoinduced enhancement in the luminescence of hydrophilic quantum dots coated with photocleavable ligands,” Journal of the American Chemical Society, vol. 134, no. 4, pp. 2276–2283, 2012.
  82. G. H. Dorion and A. F. Wiebe, Photochromism, Focal Press, New York, NY, USA, 1970.
  83. G. H. Brown, Ed., Photochromism, Wiley, New York, NY, USA, 1971.
  84. A. V. El'tsov, Organic Photochromes, Consultants Bureau, New York, NY, USA, 1990.
  85. H. Bouas-Laurent and H. Dürr, Eds., Photochromism: Molecules and Systems, Elsevier, Amsterdam, The Netherlands, 1990.
  86. J. C. Crano and R. Guglielmetti, Eds., Organic Photochromic and Thermochromic Compounds, Plenum Press, New York, NY, USA, 1999.
  87. M. Irie, Ed., “Photochromism: memories and switches—introduction,” Chemical Reviews, vol. 100, no. 5, pp. 1683–1890, 2000.
  88. M. G. Kuz'min and M. V. Koz'menko, “Luminescence of Photochromic Compounds,” in Organic Photochromes, A. V. El'tsov, Ed., pp. 245–265, Consultants Bureau, New York, NY, USA, 1990.
  89. F. M. Raymo and M. Tomasulo, “Electron and energy transfer modulation with photochromic switches,” Chemical Society Reviews, vol. 34, no. 4, pp. 327–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. F. M. Raymo and M. Tomasulo, “Fluorescence modulation with photochromic switches,” Journal of Physical Chemistry A, vol. 109, no. 33, pp. 7343–7352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Cusido, E. Deniz, and F. M. Raymo, “Fluorescent switches based on photochromic compounds,” European Journal of Organic Chemistry, no. 13, pp. 2031–2045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Yildiz, E. Deniz, and F. M. Raymo, “Fluorescence modulation with photochromic switches in nanostructured constructs,” Chemical Society Reviews, vol. 38, no. 7, pp. 1859–1867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Cusido, E. Deniz, and F. M. Raymo, “Photochromic compounds for fluorescence nanoscopy,” Current Physical Chemistry, no. 3, pp. 232–241, 2009.
  94. C. Yun, J. You, J. Kim, J. Huh, and E. Kim, “Photochromic fluorescence switching from diarylethenes and its applications,” Journal of Photochemistry and Photobiology C, vol. 10, no. 3, pp. 111–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. C. Jeong, S. I. Yang, K. H. Ahn, and E. Kim, “Highly fluorescent photochromic diarylethene in the closed-ring form,” Chemical Communications, no. 19, pp. 2503–2505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. C. Jeong, S. I. Yang, E. Kim, and K. H. Ahn, “Development of highly fluorescent photochromic material with high fatigue resistance,” Tetrahedron, vol. 62, no. 25, pp. 5855–5861, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Uno, H. Niikura, M. Morimoto, Y. Ishibashi, H. Miyasaka, and M. Irie, “In situ preparation of highly fluorescent dyes upon photoirradiation,” Journal of the American Chemical Society, vol. 133, no. 34, pp. 13558–13564, 2011.
  98. J. Fölling, V. Belov, R. Kunetsky et al., “Photochromic rhodamines provide nanoscopy with optical sectioning,” Angewandte Chemie, vol. 46, no. 33, pp. 6266–6270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Fölling, V. Belov, D. Riedel et al., “Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers,” ChemPhysChem, vol. 9, no. 2, pp. 321–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. I. Testa, A. Schönle, C. V. Middendorff et al., “Nanoscale separation of molecular species based on their rotational mobility,” Optics Express, vol. 16, no. 25, pp. 21093–21103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, and S. W. Hell, “Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy,” Chemistry, vol. 15, no. 41, pp. 10762–10776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Montenegro, M. Di Paolo, D. Capdevila, P. F. Aramendía, and M. L. Bossi, “The mechanism of the photochromic transformation of spirorhodamines,” Photochemical and Photobiological Sciences, vol. 11, no. 6, pp. 1081–1086, 2012.
  103. D. Hu, Z. Tian, W. Wu, W. Wan, and A. D. Q. Li, “Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy,” Journal of the American Chemical Society, vol. 130, no. 46, pp. 15279–15281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. Z. Tian, A. D. Q. Li, and D. Hu, “Super-resolution fluorescence nanoscopy applied to imaging core-shell photoswitching nanoparticles and their self-assemblies,” Chemical Communications, vol. 47, no. 4, pp. 1258–1260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Inada, S. Uchida, and Y. Yokoyama, “Perfect on/off switching of emission of fluorescence by photochromic reaction of a binaphthol-condensed fulgide derivative,” Chemistry Letters, no. 4, pp. 321–322, 1997. View at Scopus
  106. A. J. Myles and N. R. Branda, “Controlling photoinduced electron transfer within a hydrogen-bonded porphyrin-phenoxynaphthacenequinone photochromic system,” Journal of the American Chemical Society, vol. 123, no. 1, pp. 177–178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. J. L. Bahr, G. Kodis, L. De la Garza et al., “Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad,” Journal of the American Chemical Society, vol. 123, no. 29, pp. 7124–7133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Myles and N. R. Branda, “1,2-Dithienylethene photochromes and non-destructive erasable memory,” Advanced Functional Materials, vol. 12, no. 3, pp. 167–173, 2002.
  109. L. Giordano, T. M. Jovin, M. Irie, and E. A. Jares-Erijman, “Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET),” Journal of the American Chemical Society, vol. 124, no. 25, pp. 7481–7489, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, and T. Kawai, “A digital fluorescent molecular photoswitch,” Nature, vol. 420, no. 6917, pp. 759–760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Kawai, M. S. Kim, T. Sasaki, and M. Irie, “Fluorescence switching of photochromic diarylethenes,” Optical Materials, vol. 21, no. 1-3, pp. 275–278, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. R. T. F. Jukes, V. Adamo, F. Hartl, P. Belser, and L. De Cola, “Photochromic dithienylethene derivatives containing Ru(II) or Os(II) metal units. Sensitized photocyclization from a triplet state,” Inorganic Chemistry, vol. 43, no. 9, pp. 2779–2792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Fukaminato, T. Sasaki, T. Kawai, N. Tamai, and M. Irie, “Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level,” Journal of the American Chemical Society, vol. 126, no. 45, pp. 14843–14849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Andréasson, G. Kodis, Y. Terazono et al., “Molecule-based photonically switched half-adder,” Journal of the American Chemical Society, vol. 126, no. 49, pp. 15926–15927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Terazono, G. Kodis, J. Andréasson et al., “Photonic control of photoinduced electron transfer via switching of redox potentials in a photochromic moiety,” Journal of Physical Chemistry B, vol. 108, no. 6, pp. 1812–1814, 2004. View at Scopus
  116. E. A. Jares-Erijman, L. Giordano, C. Spagnuolo, J. Kawior, R. J. Verneij, and T. M. Jovin, “Photochromic fluorescence resonance energy transfer (pcFRET): formalism, implementation, and perspectives,” Proceedings of the Society of the Photo-Optical Instrumentation Engineers, vol. 5323, no. 13, pp. 13–26, 2004.
  117. S. D. Straight, J. Andréasson, G. Kodis et al., “Molecular AND and INHIBIT gates based on control of porphyrin fluorescence by photochromes,” Journal of the American Chemical Society, vol. 127, no. 26, pp. 9403–9409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Bossi, V. Belov, S. Polyakova, and S. W. Hell, “Reversible red fluorescent molecular switches,” Angewandte Chemie, vol. 45, no. 44, pp. 7462–7465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Odo, T. Fukaminato, and M. Irie, “Photoswitching of fluorescence based on intramolecular electron transfer,” Chemistry Letters, vol. 36, no. 2, pp. 240–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. L. H. Liu, K. Nakatani, R. Pansu, J. J. Vachon, P. Tauc, and E. Ishow, “Fluorescence patterning through photoinduced migration of squaraine-functionalized azo derivatives,” Advanced Materials, vol. 19, no. 3, pp. 433–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. A. De Meijere, Z. Ligang, V. N. Belov, M. Bossi, M. Noltemeyer, and S. W. Hell, “1,3-bicyclo[1.1.1]pentanediyl: the shortest rigid linear connector of phenylated photochromic units and a 1,5-dimethoxy-9,10-di(phenylethynyl) anthracene fluorophore,” Chemistry, vol. 13, no. 9, pp. 2503–2516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Fukaminato, T. Umemoto, Y. Iwata et al., “Photochromism of diarylethene single molecules in polymer matrices,” Journal of the American Chemical Society, vol. 129, no. 18, pp. 5932–5938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Berberich, A. M. Krause, M. Orlandi, F. Scandola, and F. Würthner, “Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system,” Angewandte Chemie, vol. 47, no. 35, pp. 6616–6619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Fölling, S. Polyakova, V. Belov, A. Van Blaaderen, M. L. Bossi, and S. W. Hell, “Synthesis and characterization of photoswitchable fluorescent silica nanoparticles,” Small, vol. 4, no. 1, pp. 134–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. T. Fukaminato, T. Doi, M. Tanaka, and M. Irie, “Photocyclization reaction of diarylethene-perylenebisimide dyads upon irradiation with visible (>500 nm) light,” Journal of Physical Chemistry C, vol. 113, no. 27, pp. 11623–11627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Fukaminato, M. Tanaka, T. Doi et al., “Fluorescence photoswitching of a diarylethene-perylenebisimide dyad based on intramolecular electron transfer,” Photochemical and Photobiological Sciences, vol. 9, no. 2, pp. 181–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. T. Fukaminato, T. Doi, N. Tamaoki et al., “Single-molecule fluorescence photoswitching of a diarylethene- perylenebisimide dyad: non-destructive fluorescence readout,” Journal of the American Chemical Society, vol. 133, no. 13, pp. 4984–4990, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. E. Deniz, S. Sortino, and F. M. Raymo, “Fluorescence switching with a photochromic auxochrome,” Journal of Physical Chemistry Letters, vol. 1, no. 24, pp. 3506–3509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Deniz, M. Tomasulo, and J. Cusido, “Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes,” Journal of Physical Chemistry C, vol. 116, no. 10, pp. 6058–6068, 2012.
  130. J. Cusido, M. Battal, E. Deniz, I. Yildiz, S. Sortino, and F. M. Raymo, “Fast fluorescence switching within hydrophilic supramolecular assemblies,” Chemistry—A European Journal, vol. 18, pp. 10399–10407, 2012.
  131. G. P. Ahern, S. F. Hsu, and M. B. Jackson, “Direct actions of nitric oxide on rat neurohypophysial K+ channels,” Journal of Physiology, vol. 520, no. 1, pp. 165–176, 1999. View at Publisher · View at Google Scholar · View at Scopus
  132. E. Korkotian, D. Holcman, and M. Segal, “Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons,” European Journal of Neuroscience, vol. 20, no. 10, pp. 2649–2663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. E. Korkotian and M. Segal, “Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine,” Cell Calcium, vol. 42, no. 1, pp. 41–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. L. Cramer and T. J. Mitchison, “Moving and stationary actin filaments are involved in spreading of postmitotic PtK2 cells,” Journal of Cell Biology, vol. 122, no. 4, pp. 833–843, 1993. View at Scopus
  135. V. I. Rodionov, S. S. Lim, V. I. Gelfand, and G. G. Borisy, “Microtubule dynamics in fish melanophores,” Journal of Cell Biology, vol. 126, no. 6, pp. 1455–1464, 1994. View at Scopus
  136. D. J. Kozlowski, T. Murakami, R. K. Ho, and E. S. Weinberg, “Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein,” Biochemistry and Cell Biology, vol. 75, no. 5, pp. 551–562, 1997. View at Scopus
  137. D. J. Kozlowski and E. S. Weinberg, “Photoactivatable (caged) fluorescein as a cell tracer for fate mapping in the zebrafish embryo,” Methods in Molecular Biology, vol. 135, pp. 349–355, 2000. View at Scopus
  138. K. Dakin, Y. Zhao, and W. H. Li, “LAMP, a new imaging assay of gap junctional communication unveils that Ca2+ influx inhibits cell coupling,” Nature Methods, vol. 2, no. 1, pp. 55–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. J. C. R. Politz, R. A. Tuft, K. V. Prasanth et al., “Rapid, diffusional shuttling of poly(A) RNA between nuclear speckles and the nucleoplasm,” Molecular Biology of the Cell, vol. 17, no. 3, pp. 1239–1249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Dakin and W. H. Li, “Infrared-LAMP: two-photon uncaging and imaging of gap junctional communication in three dimensions,” Nature Methods, vol. 3, no. 12, p. 959, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. M. Guo, S. Chen, P. Shetty, G. Zheng, R. Lin, and W. H. Li, “Imaging dynamic cell-cell junctional coupling in vivo using Trojan-LAMP,” Nature Methods, vol. 5, no. 9, pp. 835–841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. I. A. Shestopalov, C. L. W. Pitt, and J. K. Chen, “Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development,” Nature Chemical Biology, vol. 8, no. 3, pp. 270–276, 2012.
  143. W. R. Lempert, P. Ronney, K. Magee, K. R. Gee, and R. P. Haugland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Experiments in Fluids, vol. 18, no. 4, pp. 249–257, 1995. View at Publisher · View at Google Scholar · View at Scopus
  144. J. E. Guilkey, K. R. Gee, P. A. McMurtry, and J. C. Klewicki, “Use of caged fluorescent dyes for the study of turbulent passive scalar mixing,” Experiments in Fluids, vol. 21, no. 4, pp. 237–242, 1996. View at Scopus
  145. J. E. Guilkey, A. R. Kerstein, P. A. McMurtry, and J. C. Klewicki, “Mixing mechanisms in turbulent pipe flow,” Physics of Fluids, vol. 9, no. 3, pp. 717–723, 1997. View at Scopus
  146. P. H. Paul, M. G. Garguilo, and D. J. Rakestraw, “Imaging of pressure- and electrokinetically driven flows through open capillaries,” Analytical Chemistry, vol. 70, no. 13, pp. 2459–2467, 1998. View at Scopus
  147. S. L. R. Barker, D. Ross, M. J. Tarlov, M. Gaitan, and L. E. Locascio, “Control of flow direction in microfluidic devices with polyelectrolyte multilayers,” Analytical Chemistry, vol. 72, no. 24, pp. 5925–5929, 2000. View at Publisher · View at Google Scholar · View at Scopus
  148. T. J. Johnson, D. Ross, M. Gaitan, and L. E. Locascio, “Laser modification of preformed polymer microchannels: application to reduce band broadening around turns subject to electrokinetic flow,” Analytical Chemistry, vol. 73, no. 15, pp. 3656–3661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  149. D. Ross and L. E. Locascio, “Effect of caged fluorescent dye on the electroosmotic mobility in microchannels,” Analytical Chemistry, vol. 75, no. 5, pp. 1218–1220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. J. P. Shelby and D. T. Chiu, “Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detection,” Analytical Chemistry, vol. 75, no. 6, pp. 1387–1392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  151. Y. Rondelez, G. Tresset, K. V. Tabata et al., “Microfabricated arrays of femtoliter chambers allow single molecule enzymology,” Nature Biotechnology, vol. 23, no. 3, pp. 361–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Hapuarachchi, S. P. Premeau, and C. A. Aspinwall, “High-speed capillary zone electrophoresis with online photolytic optical injection,” Analytical Chemistry, vol. 78, no. 11, pp. 3674–3680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. H. L. D. Lee, S. J. Lord, S. Iwanaga et al., “Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores,” Journal of the American Chemical Society, vol. 132, no. 43, pp. 15099–15101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. M. F. Juette, T. J. Gould, M. D. Lessard et al., “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nature Methods, vol. 5, no. 6, pp. 527–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. S. R. P. Pavani, M. A. Thompson, J. S. Biteen et al., “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 2995–2999, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. F. Cella Zanacchi, Z. Lavagnino, and M. Perrone Donnorso, “Live-cell 3D superresolution imaging in thick biological samples,” Nature Methods, vol. 8, no. 12, pp. 1047–1049, 2011.
  157. M. Bossi, J. Föiling, V. N. Belov et al., “Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species,” Nano Letters, vol. 8, no. 8, pp. 2463–2468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. D. Aquino, A. Schönle, C. Geisler et al., “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nature Methods, vol. 8, no. 4, pp. 353–359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. M. J. Roberti, J. Fölling, M. S. Celej, M. L. Bossi, T. M. Jovin, and E. A. Jares-Erijman, “Imaging nanometer-sized b-synuclein aggregates by superresolution fluorescence localization microscopy,” Biophysical Journal, vol. 102, no. 7, pp. 1598–1607, 2012.
  160. H. Aoki, K. Mori, and S. Ito, “Conformational analysis of single polymer chains in three dimensions by super-resolution fluorescence microscopy,” Soft Matter, vol. 8, pp. 4390–4395, 2012.
  161. Y. Bernardinelli, C. Haeberli, and J. Y. Chatton, “Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution,” Cell Calcium, vol. 37, no. 6, pp. 565–572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Lopez, L. Dupou, A. Altibelli, J. Trotard, and J. F. Tocanne, “Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Critical comparison of analytical solutions, and a new mathematical method for calculation of diffusion coefficient D,” Biophysical Journal, vol. 53, no. 6, pp. 963–970, 1988. View at Scopus
  163. D. E. Wolf, “Theory of fluorescence recovery after photobleaching measurements on cylindrical surfaces,” Biophysical Journal, vol. 61, no. 2 I, pp. 487–493, 1992. View at Scopus
  164. K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester, “Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope,” Biophysical Journal, vol. 85, no. 4, pp. 2240–2252, 2003. View at Scopus