About this Journal Submit a Manuscript Table of Contents
ISRN Optics
Volume 2012 (2012), Article ID 647849, 5 pages
http://dx.doi.org/10.5402/2012/647849
Research Article

Colorful Polymer Compositions with Dyed Graphene Oxide Nanosheets

1Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Moscow 142432, Russia
2Instituto Politécnico Nacional, ESFM, UPALM, Avenida IPN, Edif. 9, 07738 Mexico City, DF, Mexico
3Department of Physics, Florida A&M University, Tallahassee, FL 32307, USA

Received 23 November 2011; Accepted 26 December 2011

Academic Editors: L. Shah and A. Tervonen

Copyright © 2012 Y. M. Shulga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Brodie, “Sur le poids atomique du graphite,” Annales de Chimie et de Physique, vol. 59, pp. 466–472, 1860.
  2. R. Yazami and P. Touzain, “Lithium—graphite oxide cells Part III: effect of origin and oxidation of graphite on batteries performances,” Synthetic Metals, vol. 12, no. 1-2, pp. 499–503, 1985. View at Scopus
  3. M. Mermoux, R. Yazami, and P. Touzain, “Lithium-graphitic oxide cells part IV: influence of electrolyte and cathode composition,” Journal of Power Sources, vol. 20, no. 1-2, pp. 105–110, 1987. View at Scopus
  4. T. Cassagneau and J. H. Fendler, “High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes,” Advanced Materials, vol. 10, no. 11, pp. 877–881, 1998. View at Scopus
  5. T. Hwa, E. Kokufuta, and T. Tanaka, “Conformation of graphite oxide membranes in solution,” Physical Review A, vol. 44, no. 4, pp. R2235–R2238, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wen, C. W. Garland, T. Hwa et al., “Crumpled and collapsed conformations in graphite oxide membranes,” Nature, vol. 355, no. 6359, pp. 426–428, 1992. View at Scopus
  7. F. F. Abraham and M. Goulian, “Diffraction from polymerized membranes: flat vs. crumpled,” Europhysics Letters, vol. 19, pp. 293–296, 1992.
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, “Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles,” Carbon, vol. 42, no. 14, pp. 2929–2937, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hirata, T. Gotou, and M. Ohba, “Thin-film particles of graphite oxide. 2: preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits,” Carbon, vol. 43, no. 3, pp. 503–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Szabó, A. Szeri, and I. Dékány, “Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer,” Carbon, vol. 43, no. 1, pp. 87–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, and J. M. Tour, “Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets,” Journal of the American Chemical Society, vol. 130, no. 48, pp. 16201–16206, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nature Nanotechnology, vol. 4, no. 1, pp. 25–29, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. Y. N. Gengler, K. Spyrou, and P. Rudolf, “A roadmap to high quality chemically prepared Graphene,” Journal of Physics D, vol. 43, no. 37, Article ID 374015, 19 pages, 2010. View at Publisher · View at Google Scholar
  18. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, p. 1339, 1958. View at Scopus
  19. V. E. Muradyan, M. G. Ezerskaya, V. I. Smirnova, et al., “Transformation of graphite oxide at conditions of ionic hydration,” Russian Journal of Organic Chemistry, vol. 12, pp. 2626–2629, 1991.
  20. Y. Si and E. T. Samulski, “Synthesis of water soluble graphene,” Nano Letters, vol. 8, no. 6, pp. 1679–1682, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, and Y. H. Lee, “Thermal stability of graphite oxide,” Chemical Physics Letters, vol. 470, no. 4–6, pp. 255–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 11027–11032, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. Y. M. Shulga, V. M. Martynenko, V. E. Muradyan, S. A. Baskakov, V. A. Smirnov, and G. L. Gutsev, “Gaseous products of thermo- and photo-reduction of graphite oxide,” Chemical Physics Letters, vol. 498, no. 4–6, pp. 287–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. C. Schniepp, J. L. Li, M. J. McAllister et al., “Functionalized single graphene sheets derived from splitting graphite oxide,” Journal of Physical Chemistry B, vol. 110, no. 17, pp. 8535–8539, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. X. Sun, Z. Liu, K. Welsher, et al., “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Research, vol. 1, pp. 203–212, 2008.
  26. M. J. Hudson, F. R. Hunter-Fujita, J. W. Peckett, and P. M. Smith, “Electrochemically prepared colloidal, oxidised graphite,” Journal of Materials Chemistry, vol. 7, no. 2, pp. 301–305, 1997. View at Scopus
  27. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” Journal of Materials Chemistry, vol. 16, no. 2, pp. 155–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. B. W. Reed and M. Sarikaya, “Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy,” Physical Review B, vol. 64, no. 19, Article ID 195404, 13 pages, 2001.
  29. S. Attal, R. Thiruvengadathan, and O. Regev, “Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy,” Analytical Chemistry, vol. 78, no. 23, pp. 8098–8104, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, vol. 3, no. 2, pp. 101–105, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul'ga et al., “Photoreduction of graphite oxide,” High Energy Chemistry, vol. 45, no. 1, pp. 57–61, 2011. View at Publisher · View at Google Scholar