Abstract

We consider a nonlinear degenerate coupled beams system with weak damping. We show using the Nakao method that the solution of this system decays exponentially when the time tends to infinity.

1. Introduction

For the last several decades, various types of equations have been employed as some mathematical models describing physical, chemical, biological, and engineering systems. Among them, the mathematical models of vibrating, flexible structures have been considerably stimulated in recent years by an increasing number of questions of practical concern. Research on stabilization of distributed parameter systems has largely focused on the stabilization of dynamic models of individual structural members such as strings, membranes, and beams.

This paper is devoted to the study of the existence, uniqueness, and uniform decay rates of the energy of solution for the nonlinear degenerate coupled beams system with weak damping given by 𝐾1(π‘₯,𝑑)𝑒𝑑𝑑+Ξ”2ξ€·π‘’βˆ’π‘€β€–π‘’β€–2+‖𝑣‖2Δ𝑒+𝑒𝑑𝐾=0inΩ×(0,𝑇),(1.1)2(π‘₯,𝑑)𝑣𝑑𝑑+Ξ”2ξ€·π‘£βˆ’π‘€β€–π‘’β€–2+‖𝑣‖2Δ𝑣+𝑣𝑑=0inΩ×(0,𝑇),(1.2)𝑒=𝑣=πœ•π‘’=πœ•πœ‚πœ•π‘£ξ€·π‘’πœ•πœ‚=0onΞ£,(1.3)(𝑒(π‘₯,0),𝑣(π‘₯,0))=0,𝑣0𝑒inΞ©,(1.4)𝑑(π‘₯,0),𝑣𝑑=𝑒(π‘₯,0)1(π‘₯),𝑣1ξ€Έ(π‘₯)inΞ©,(1.5) where Ξ© is a bounded domain of ℝ𝑛, 𝑛β‰₯1, with smooth boundary Ξ“,   𝑇>0 is a real arbitrary number, and πœ‚ is the unit normal at Ξ£=Γ×(0,𝑇) direct towards the exterior of Ω×(0,𝑇). Here πΎπ‘–βˆˆπΆ1([0,𝑇];𝐻10(Ξ©)∩𝐿∞(Ξ©)),   𝑖=1,2 and π‘€βˆˆπΆ1([0,∞[), see Section 2 for more details.

Problems related to the system (1.1)–(1.5) are interesting not only from the point of view of PDE general theory, but also due to its applications in mechanics. For instance, when we consider only one equation without the dissipative term, that is, 𝐾(π‘₯,𝑑)𝑒𝑑𝑑+Ξ”2ξ€·π‘’βˆ’π‘€β€–π‘’β€–2Δ𝑒=0inΩ×(0,𝑇)(1.6) and with 𝐾(π‘₯,𝑑)=1, it is a generalization of one-dimensional model proposed by Woinowsky-Krieger [1] as a model for the transverse deflection 𝑒(π‘₯,𝑑) of an extensible beam of natural length whose ends are held a fixed distance apart. The nonlinear term represents the change in the tension of the beam due to its extensibility. The model has also been discussed by Eisley [2], while related experimental results have been given by Burgreen [3]. Dickey [4] considered the initial-boundary value problem for one-dimensional case of (1.6) with 𝐾(π‘₯,𝑑)=1 in the case when the ends of the beam are hinged. He showed how the model affords a description of the phenomenon of β€œdynamic buckling.” The one-dimensional case has also been studied by Ball [5]. He extended the work of Dickey [4] in several directions. In both cases he used the techniques of Lions [6] to prove that the initial boundary value problem is weakly well-posed. Menzala [7] studied the existence and uniqueness of solutions of (1.6) with 𝐾(π‘₯,𝑑)=1, π‘₯βˆˆβ„π‘›, and π‘€βˆˆπΆ1[0,∞[  and 𝑀(πœ†)β‰₯π‘š0>0, for all πœ†β‰₯0. The existence, uniqueness, and boundary regularity of weak solutions were considered by Ramos [8] with 𝐾(π‘₯)β‰₯π‘˜0>0,  π‘₯∈Ω. See also Pereira et al. [9]. The abstract model 𝑒𝑑𝑑+𝐀2ξ‚€||𝐀𝑒+𝑀1/2||2𝐀𝑒=0(1.7) of (1.6), where 𝐀 is a nonbounded self-adjoint operator in a conveniently Hilbert space has been studied by Medeiros [10]. He proved that the abstract model is well-posed in the weak sense, since π‘€βˆˆπΆ1[0,∞[  with 𝑀(πœ†)β‰₯π‘š0+π‘š1πœ†, for all πœ†β‰₯0,  where π‘š0 and π‘š1 are positive constants. Pereira [11] considered the abstract model (1.7) with dissipative term 𝑒𝑑. He proved the existence, uniqueness, and exponential decay of the solutions with the following assumptions about 𝑀: π‘€βˆˆπΆ0([[0,∞)with𝑀(πœ†)β‰₯βˆ’π›½,βˆ€πœ†β‰₯0,0<𝛽<πœ†1,(1.8) where πœ†1 is the first eigenvalue of 𝐀2π‘’βˆ’πœ†π€π‘’=0.(1.9) Our main goal here is to extend the previous results for a nonlinear degenerate coupled beams system of type (1.1)–(1.5). We show the existence, uniqueness, and uniform exponential decay rates.

Our paper is organized as follows. In Section 2 we give some notations and state our main result. In Section 3 we obtain the existence and uniqueness for global weak solutions. To obtain the global weak solution we use the Faedo-Galerkin method. Finally, in Section 4 we use the Nakao method (see Nakao [12]) to derive the exponential decay of the energy.

2. Assumptions and Main Result

In what follows we are going to use the standard notations established in Lions [6].

Let us consider the Hilbert space 𝐿2(Ξ©) endowed with the inner product (ξ€œπ‘’,𝑣)=Ω𝑒(π‘₯)𝑣(π‘₯)𝑑π‘₯(2.1) and norm √|𝑒|=(𝑒,𝑣).(2.2) We also consider the Sobolev space 𝐻1(Ξ©) endowed with the scalar product (𝑒,𝑣)𝐻1(Ξ©)=(𝑒,𝑣)+(βˆ‡π‘’,βˆ‡π‘£).(2.3) We define the subspace of 𝐻1(Ξ©), denoted by 𝐻10(Ξ©). This space endowed with the norm induced by the scalar product ((𝑒,𝑣))𝐻10(Ξ©)=(βˆ‡π‘’,βˆ‡π‘£)(2.4) is a Hilbert space.

2.1. Assumptions on the Functions 𝐾𝑖, 𝑖=1,2, and 𝑀

To obtain the weak solution of the system (1.1)–(1.5) we consider the following hypothesis: πΎπ‘–βˆˆπΆ1ξ€·[]0,𝑇;𝐻10(Ξ©)βˆ©πΏβˆžξ€Έ(Ξ©),𝑖=1,2,with𝐾𝑖(π‘₯,𝑑)β‰₯0,βˆ€(π‘₯,𝑑)βˆˆΞ©Γ—(0,𝑇),andthereexists𝛾>0suchthat𝐾𝑖||||(π‘₯,0)β‰₯𝛾>0,(2.5)πœ•πΎπ‘–||||πœ•π‘‘β„β‰€π›Ώ+𝐢(𝛿)𝐾𝑖,𝑖=1,2,βˆ€π›Ώ>0,(2.6)π‘€βˆˆπΆ1([[)0,∞with𝑀(πœ†)β‰₯βˆ’π›½,βˆ€πœ†β‰₯0,0<𝛽<πœ†1,πœ†1Ξ”isthefirsteingenvalueofthestationaryproblem,2π‘’βˆ’πœ†(βˆ’Ξ”π‘’)=0.(2.7)

Remark 2.1. Let πœ†1 be the first eingevalue of Ξ”2π‘’βˆ’πœ†(βˆ’Ξ”π‘’)=0; then (see Miklin [13]) πœ†1=infπ‘€βˆˆπ»20(Ξ©)||||Δ𝑀2||||βˆ‡π‘€2>0.(2.8)

3. Existence and Uniqueness Results

Now, we are in a position to state our result about the existence of weak solution to the system (1.1)–(1.5).

Theorem 3.1. Let one take (𝑒0,𝑣0)∈(𝐻10(Ξ©)∩𝐻4(Ξ©))2  and   (𝑒1,𝑣1)∈(𝐻20(Ξ©))2, and let one suppose that assumptions (2.5), (2.6) and (2.7) hold. Then, there exist unique functions 𝑒,π‘£βˆΆ[0,𝑇]→𝐿2(Ξ©) in the class 𝐿(𝑒,𝑣)βˆˆξ€·ξ€·βˆžloc(0,∞)∢𝐻20(Ξ©)∩𝐻4(Ξ©)ξ€Έξ€Έ2,𝑒𝑑,π‘£π‘‘ξ€ΈβˆˆπΏξ€·ξ€·βˆžloc(0,∞)∢𝐻20(Ξ©)ξ€Έξ€Έ2,𝑒𝑑𝑑,π‘£π‘‘π‘‘ξ€ΈβˆˆπΏξ€·ξ€·βˆžloc(0,∞)∢𝐿2(Ξ©)ξ€Έξ€Έ2(3.1) satisfying 𝐾1(π‘₯,𝑑)𝑒𝑑𝑑+Ξ”2ξ€·π‘’βˆ’π‘€β€–π‘’β€–2+‖𝑣‖2Δ𝑒+𝑒𝑑=0in𝐿2locξ€·0,∞;𝐿2ξ€Έ,𝐾(Ξ©)2(π‘₯,𝑑)𝑣𝑑𝑑+Ξ”2ξ€·π‘£βˆ’π‘€β€–π‘’β€–2+‖𝑣‖2Δ𝑣+𝑣𝑑=0in𝐿2locξ€·0,∞;𝐿2(ξ€Έ,𝑒Ω)(3.2)(𝑒(π‘₯,0),𝑣(π‘₯,0))=0(π‘₯),𝑣0𝑒(π‘₯)inΞ©,𝑑(π‘₯,0),𝑣𝑑(ξ€Έ=𝑒π‘₯,0)1(π‘₯),𝑣1(ξ€Έπ‘₯)inΞ©.(3.3)

Proof. Since 𝐾𝑖β‰₯0, 𝑖=1,2, we first perturb the system (1.1)–(1.5) with the terms πœ€π‘’π‘‘π‘‘,πœ€π‘£π‘‘π‘‘, with 0<πœ€<1, and we apply the Faedo-Galerkin method to the perturbed system. After we pass to the limit with πœ€β†’0 in the perturbed system and we obtain the solution for the system (1.1)–(1.5).
(1) Perturbed System
Consider the perturbed system 𝐾1𝑒+πœ€πœ€π‘‘π‘‘+Ξ”π‘’πœ€ξ€·+π‘€β€–π‘’πœ€β€–2+β€–π‘£πœ€β€–2ξ€Έ(βˆ’Ξ”π‘’πœ€)+π‘’πœ€π‘‘ξ€·πΎ=0inΩ×(0,𝑇),2𝑣+πœ€πœ€π‘‘π‘‘+Ξ”π‘£πœ€ξ€·+π‘€β€–π‘’πœ€β€–2+β€–π‘£πœ€β€–2ξ€Έ(βˆ’Ξ”π‘£πœ€)+π‘£πœ€π‘‘π‘’=0inΩ×(0,𝑇),πœ€=π‘£πœ€=πœ•π‘’πœ€=πœ•πœ‚πœ•π‘£πœ€πœ•πœ‚=0onΞ£,(π‘’πœ€(π‘₯,0),π‘£πœ€ξ€·π‘’(π‘₯,0))=0(π‘₯),𝑣0𝑒(π‘₯)inΞ©,πœ€π‘‘(π‘₯,0),π‘£πœ€π‘‘(ξ€Έ=𝑒π‘₯,0)1(π‘₯),𝑣1(ξ€Έπ‘₯)inΞ©.(3.4) Let (π‘€πœˆ)πœˆβˆˆβ„• be a basis of 𝐻20(Ξ©) formed by the eigenvectors of the operator βˆ’Ξ”, that is, βˆ’Ξ”π‘€πœˆ=πœ†πœˆπ‘€πœˆ, with πœ†πœˆβ†’βˆž when πœˆβ†’βˆž. Let π‘‰π‘š=[𝑀1,𝑀2,…,π‘€π‘š] be the subspace generated by the first π‘š vectors of (π‘€πœˆ)πœˆβˆˆβ„•.
For each fixed πœ€, we consider π‘’πœ€π‘š(𝑑)=π‘šξ“π‘—=1π‘”π‘—πœ€π‘š(𝑑)π‘€π‘—βˆˆπ‘‰π‘š,π‘£πœ€π‘š(𝑑)=π‘šξ“π‘—=1β„Žπ‘—πœ€π‘š(𝑑)π‘€π‘—βˆˆπ‘‰π‘š(3.5) as solutions of the approximated perturbed system 𝐾1𝑒+πœ€πœ€π‘‘π‘‘π‘šξ€Έ+ξ€·(𝑑),π‘€βˆ’Ξ”π‘’πœ€π‘šξ€Έξ‚€β€–β€–π‘’(𝑑),βˆ’Ξ”π‘€+π‘€πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2ξ‚ξ€·βˆ’Ξ”π‘’πœ€π‘šξ€Έ+𝑒(𝑑),π‘€πœ€π‘‘π‘šξ€Έ(𝑑),𝑀=0,βˆ€π‘€βˆˆπ‘‰π‘š,𝐾(3.6)ξ€·ξ€·2𝑣+πœ€πœ€π‘‘π‘‘π‘šξ€Έ+ξ€·(𝑑),π‘§βˆ’Ξ”π‘£πœ€π‘šξ€Έξ‚€β€–β€–π‘’(𝑑),βˆ’Ξ”π‘§+π‘€πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2ξ‚ξ€·βˆ’Ξ”π‘£πœ€π‘šξ€Έ+𝑣(𝑑),π‘§πœ€π‘‘π‘šξ€Έ(𝑑),𝑧=0,βˆ€π‘§βˆˆπ‘‰π‘š,𝑒(3.7)πœ€π‘š(0),π‘£πœ€π‘šξ€Έ=𝑒(0)0π‘š,𝑣0π‘šξ€ΈβŸΆξ€·π‘’0,𝑣0𝐻in20(Ξ©)∩𝐻4ξ€Έ(Ξ©)2,𝑒(3.8)πœ€π‘‘π‘š(0),π‘£πœ€π‘‘π‘šξ€Έ=𝑒(0)1π‘š,𝑣1π‘šξ€ΈβŸΆξ€·π‘’1,𝑣1𝐻in20ξ€Έ(Ξ©)2.(3.9) The local existence of the approximated solutions (π‘’πœ€π‘š,π‘£πœ€π‘š) is guaranteed by the standard results of ordinary differential equations. The extension of the solutions (π‘’πœ€π‘š,π‘£πœ€π‘š) to the whole interval [0,𝑇] is a consequence of the first estimate below.
The First Estimate
Setting 𝑀=π‘’πœ€π‘‘π‘š and 𝑧=π‘£πœ€π‘‘π‘š in (3.6) and (3.7), respectively, integrating over (0,𝑑), and taking the convergences (3.8) and (3.9) in consideration, we arrive at 𝐾1,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2||𝑒(𝑑)+πœ€πœ€π‘‘π‘š||(𝑑)2+||Ξ”π‘’πœ€π‘š||(𝑑)2+𝐾2,ξ€·π‘£πœ€π‘‘π‘šξ€Έ2||𝑣(𝑑)+πœ€πœ€π‘‘π‘š||2+||Ξ”π‘£πœ€π‘š||(𝑑)2+ξ‚Šπ‘€ξ‚€β€–β€–π‘’πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2ξ‚ξ€œ+2𝑑0||π‘’πœ€π‘‘π‘š||(𝑠)2+||π‘£πœ€π‘‘π‘š||(𝑠)2ξ‚„β‰€ξ€œπ‘‘π‘ π‘‘0||||ξ‚΅πœ•πΎ1,ξ€·π‘’πœ•π‘‘πœ€π‘‘π‘šξ€Έ2(ξ‚Ά||||𝑠)ℝ+||||ξ‚΅πœ•πΎ2,ξ€·π‘£πœ•π‘‘πœ€π‘‘π‘šξ€Έ2(ξ‚Ά||||𝑠)ℝ𝐾𝑑𝑠+1(0),𝑒21π‘šξ€Έ||𝑒+πœ€1π‘š||2+||Δ𝑒0π‘š||2+𝐾2(0),𝑣21π‘šξ€Έ||𝑣+πœ€1π‘š||2+||Δ𝑣0π‘š||2+ξ‚Šπ‘€ξ‚€β€–β€–π‘’0π‘šβ€–β€–2+‖‖𝑣0π‘šβ€–β€–2,(3.10) where ξ‚Šξ€œπ‘€(𝑠)=𝑠0𝑀(𝜏)π‘‘πœ.(3.11) From (2.7) and (2.8), we have ξ‚Šπ‘€ξ‚€β€–β€–π‘’πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2𝛽β‰₯βˆ’πœ†1ξ‚€||Ξ”π‘’πœ€π‘š||(𝑑)2+||Ξ”π‘£πœ€π‘š||(𝑑)2.(3.12) Since 𝛽<πœ†1 and so by (2.5)–(2.7) and convergences (3.8), (3.9), and (3.12), we obtain 𝐾1,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2+𝐾(𝑑)2,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2||𝑒(𝑑)+πœ€πœ€π‘‘π‘š||(𝑑)2+||π‘£πœ€π‘‘π‘š||2+𝛽(𝑑)1βˆ’πœ†1ξ‚Άξ‚€||Ξ”π‘’πœ€π‘š||(𝑑)2+||Ξ”π‘£πœ€π‘š||(𝑑)2+ξ€œ(2βˆ’π›Ώ)𝑑0||π‘’πœ€π‘‘π‘š||(𝑠)2+||π‘’πœ€π‘‘π‘š||(𝑠)2𝑑𝑠≀𝐢0ξ€œ+𝐢(𝛿)𝑑0𝐾1,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2+𝐾(𝑠)2,ξ€·π‘£πœ€π‘‘π‘šξ€Έ2(𝑠)𝑑𝑠(3.13) with 0<𝛿<1 and 𝐢0 being a positive constant independent of πœ€, π‘š, and 𝑑.
Employing Gronwall’s lemma in (3.13), we obtain the first estimate 𝐾1,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2+𝐾(𝑑)2,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2||𝑒(𝑑)+πœ€πœ€π‘‘π‘š||(𝑑)2+||π‘£πœ€π‘‘π‘š||2+𝛽(𝑑)1βˆ’πœ†1ξ‚Άξ‚€||Ξ”π‘’πœ€π‘š||(𝑑)2+||Ξ”π‘£πœ€π‘š||(𝑑)2+ξ€œ(2βˆ’π›Ώ)𝑑0||π‘’πœ€π‘‘π‘š||(𝑠)2+||π‘’πœ€π‘‘π‘š||(𝑠)2𝑑𝑠≀𝐢1,(3.14) where 𝐢1 is a positive constant independent of πœ€, π‘š, and 𝑑. Then, we can conclude that 𝐾11/2π‘’πœ€π‘‘π‘šξ€Έ,𝐾21/2π‘£πœ€π‘‘π‘šξ€ΈareboundedinπΏβˆžξ€·0,𝑇;𝐿2ξ€Έ,ξ‚€βˆš(Ξ©)πœ€π‘’πœ€π‘‘π‘šξ‚,ξ‚€βˆšπœ€π‘£πœ€π‘‘π‘šξ‚areboundedinπΏβˆžξ€·0,𝑇;𝐿2ξ€Έ,𝑒(Ξ©)πœ€π‘šξ€Έ,ξ€·π‘£πœ€π‘šξ€ΈareboundedinπΏβˆžξ€·0,𝑇;𝐻20ξ€Έ,𝑒(Ξ©)πœ€π‘‘π‘šξ€Έ,ξ€·π‘£πœ€π‘‘π‘šξ€Έareboundedin𝐿2ξ€·0,𝑇;𝐿2ξ€Έ.(Ξ©)(3.15)
The Second Estimate
Substituting 𝑀=βˆ’Ξ”π‘’πœ€π‘‘π‘š(𝑑) and 𝑧=βˆ’Ξ”π‘£πœ€π‘‘π‘š(𝑑) in (3.6) and (3.7), respectively, it holds that 𝑑𝐾𝑑𝑑1,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2+𝐾(𝑑)2,ξ€·π‘£πœ€π‘‘π‘šξ€Έ2‖‖𝑒(𝑑)+πœ€πœ€π‘‘π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘‘π‘šβ€–β€–(𝑑)2+β€–β€–Ξ”π‘’πœ€π‘šβ€–β€–(𝑑)2+β€–β€–Ξ”π‘£πœ€π‘šβ€–β€–(𝑑)2‖‖𝑒+2πœ€π‘‘π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘‘π‘šβ€–β€–(𝑑)2=ξ‚΅ξ‚΅πœ•πΎ1,ξ€·π‘’πœ•π‘‘πœ€π‘‘π‘šξ€Έ2+(𝑑)ξ‚Άξ‚Άξ‚΅ξ‚΅πœ•πΎ2,ξ€·π‘£πœ•π‘‘πœ€π‘‘π‘šξ€Έ2‖‖𝑒(𝑑)ξ‚Άξ‚Άβˆ’2π‘€πœ€π‘š(‖‖𝑑)2+β€–β€–π‘£πœ€π‘š(‖‖𝑑)2ξ‚β‹…ξ€Ίξ€·ξ€·βˆ’Ξ”π‘’πœ€π‘š(𝑑),π‘’πœ€π‘‘π‘š(+𝑑)ξ€Έξ€Έξ€·ξ€·βˆ’Ξ”π‘£πœ€π‘š(𝑑),π‘£πœ€π‘‘π‘š(.𝑑)ξ€Έξ€Έξ€»(3.16)
Integrating (3.16) over (0,𝑑), 0<𝑑<𝑇, and taking (2.5)–(2.7) and (3.8), (3.9), and first estimate into account, we infer 𝐾1,ξ€·π‘’πœ€π‘‘π‘šξ€Έ2+𝐾(𝑑)2,ξ€·π‘£πœ€π‘‘π‘šξ€Έ2‖‖𝑒(𝑑)+πœ€πœ€π‘‘π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘‘π‘šβ€–β€–(𝑑)2+β€–β€–Ξ”π‘’πœ€π‘šβ€–β€–(𝑑)2+β€–β€–Ξ”π‘£πœ€π‘šβ€–β€–(𝑑)2‖‖𝑒+2πœ€π‘‘π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘‘π‘šβ€–β€–(𝑑)2ξ‚ξ€œ+(2βˆ’2𝛿)𝑑0ξ‚€β€–β€–π‘’πœ€π‘‘π‘š(‖‖𝑑)2+β€–β€–π‘£πœ€π‘‘π‘š(‖‖𝑑)2𝑑𝑠≀𝐢2,(3.17) where 𝐢2 is a positive constant independent of πœ€, π‘š, and 𝑑. From the above estimate we conclude that 𝐾11/2π‘’πœ€π‘‘π‘šξ€Έ,𝐾21/2π‘£πœ€π‘‘π‘šξ€ΈareboundedinπΏβˆžξ€·0,𝑇;𝐻10ξ€Έ,ξ‚€βˆš(Ξ©)πœ€π‘’πœ€π‘‘π‘šξ‚,ξ‚€βˆšπœ€π‘£πœ€π‘‘π‘šξ‚areboundedinπΏβˆžξ€·0,𝑇;𝐻10ξ€Έ,𝑒(Ξ©)πœ€π‘šξ€Έ,ξ€·π‘£πœ€π‘šξ€ΈareboundedinπΏβˆžξ€·0,𝑇;𝐻20(Ξ©)∩𝐻4ξ€Έ,𝑒(Ξ©)πœ€π‘‘π‘šξ€Έ,ξ€·π‘£πœ€π‘‘π‘šξ€Έareboundedin𝐿2ξ€·0,𝑇;𝐻10ξ€Έ.(Ξ©)(3.18)The Third Estimate
Differentiating (3.6) and (3.7) with respect to 𝑑 and setting 𝑀=π‘’πœ€π‘‘π‘‘π‘š and π‘£πœ€π‘‘π‘‘π‘š, respectively, we arrive at 𝑑𝐾𝑑𝑑1,ξ€·π‘’πœ€π‘‘π‘‘π‘šξ€Έ(𝑑)2+𝐾2,ξ€·π‘£πœ€π‘‘π‘‘π‘šξ€Έ(𝑑)2||𝑒+πœ€πœ€π‘‘π‘‘π‘š||(𝑑)2+||π‘£πœ€π‘‘π‘‘π‘š||2+||Ξ”π‘’πœ€π‘‘π‘š||(𝑑)2+||Ξ”π‘£πœ€π‘‘π‘š||(𝑑)2ξ‚„ξ‚€||𝑒+2πœ€π‘‘π‘š||(𝑠)2+||π‘£πœ€π‘‘π‘š||(𝑠)2‖‖𝑒=βˆ’2π‘€πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2ξ‚β‹…ξ€Ίξ€·βˆ’Ξ”π‘’πœ€π‘‘π‘š(𝑑),π‘’πœ€π‘‘π‘‘π‘šξ€Έ+ξ€·(𝑑)βˆ’Ξ”π‘£πœ€π‘‘π‘š(𝑑),π‘£πœ€π‘‘π‘‘π‘šπ‘’(𝑑)ξ€Έξ€»βˆ’4ξ€Ίξ€·πœ€π‘š(t),βˆ’Ξ”π‘’πœ€π‘‘π‘šξ€Έ+𝑣(𝑑)πœ€π‘š(𝑑),βˆ’Ξ”π‘£πœ€π‘‘π‘š(𝑑)ξ€Έξ€»β‹…π‘€ξ…žξ‚€β€–β€–π‘’πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2ξ‚β‹…ξ€Ίξ€·βˆ’Ξ”π‘’πœ€π‘‘π‘š(𝑑),π‘’πœ€π‘‘π‘‘π‘š(ξ€Έ+𝑑)βˆ’Ξ”π‘£πœ€π‘‘π‘š(𝑑),π‘£πœ€π‘‘π‘‘π‘š(+𝑑)ξ€Έξ€»πœ•πΎ1,ξ€·π‘’πœ•π‘‘πœ€π‘‘π‘‘π‘šξ€Έ2(ξ‚Ά+𝑑)πœ•πΎ2,ξ€·π‘£πœ•π‘‘πœ€π‘‘π‘‘π‘šξ€Έ2(ξ‚Ά.𝑑)(3.19) Integrating (3.19) over (0,𝑑), and using (2.5), (3.8), (3.9), and the norms |π‘’πœ€π‘‘π‘‘π‘š(0)|2≀𝐢3 and |π‘£πœ€π‘‘π‘‘π‘š(0)|2≀𝐢4 after employing Gronwall’s lemma, we obtain the third estimate 𝐾1,ξ€·π‘’πœ€π‘‘π‘‘π‘šξ€Έ2+𝐾(𝑑)2,ξ€·π‘£πœ€π‘‘π‘‘π‘šξ€Έ2||𝑒(𝑑)+πœ€πœ€π‘‘π‘‘π‘š||(𝑑)2+||π‘£πœ€π‘‘π‘‘π‘š||(𝑑)2+||Ξ”π‘’πœ€π‘‘π‘š||(𝑑)2+||Ξ”π‘£πœ€π‘‘π‘š||(𝑑)2ξ‚„+ξ€œ(2βˆ’2𝛿)𝑑0ξ‚€||π‘’πœ€π‘‘π‘‘π‘š||(𝑑)2+||π‘£πœ€π‘‘π‘‘π‘š||(𝑑)2𝑑𝑠≀𝐢5,(3.20) where 𝐢5 is a positive constant independent of πœ€, π‘š, and 𝑑. From the above estimate we conclude that 𝐾11/2π‘’πœ€π‘‘π‘‘π‘šξ€Έ,𝐾21/2π‘£πœ€π‘‘π‘‘π‘šξ€ΈareboundedinπΏβˆžξ€·0,𝑇;𝐿2ξ€Έ,ξ‚€βˆš(Ξ©)πœ€π‘’πœ€π‘‘π‘‘π‘šξ‚,ξ‚€βˆšπœ€π‘£πœ€π‘‘π‘‘π‘šξ‚areboundedinπΏβˆžξ€·0,𝑇;𝐿2ξ€Έ,𝑒(Ξ©)πœ€π‘‘π‘šξ€Έ,ξ€·π‘£πœ€π‘‘π‘šξ€ΈareboundedinπΏβˆžξ€·0,𝑇;𝐻20ξ€Έ,𝑒(Ξ©)πœ€π‘‘π‘‘π‘šξ€Έ,ξ€·π‘£πœ€π‘‘π‘‘π‘šξ€Έareboundedin𝐿2ξ€·0,𝑇;𝐿2ξ€Έ.(Ξ©)(3.21)(2) Limits of Approximated Solutions
From the Aubin-Lions theorem (see [6]) we deduce that there exist subsequences of (π‘’πœ€π‘š)π‘šβˆˆβ„• and (π‘£πœ€π‘š)π‘šβˆˆβ„• such that π‘’πœ€π‘šβŸΆπ‘’πœ€stronglyin𝐿2ξ€·0,𝑇;𝐻10ξ€Έ,𝑣(Ξ©)πœ€π‘šβŸΆπ‘£πœ€stronglyin𝐿2ξ€·0,𝑇;𝐻10ξ€Έ,(Ξ©)(3.22) and since 𝑀 is continuous, it follows that π‘€ξ‚€β€–β€–π‘’πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2ξ‚ξ€·β€–π‘’βŸΆπ‘€πœ€β€–(𝑑)2+β€–π‘£πœ€β€–(𝑑)2ξ€Έ.(3.23) From the above estimate we can conclude that there exist subsequences of (π‘’πœ€π‘š)π‘šβˆˆβ„• and (π‘£πœ€π‘š)π‘šβˆˆβ„•, that we denote also by (π‘’πœ€π‘š)π‘šβˆˆβ„• and (π‘£πœ€π‘š)π‘šβˆˆβ„• such that as π‘šβ†’βˆž and πœ€β†’0 we have π‘’πœ€π‘šβŸΆπ‘’,π‘£πœ€π‘šβŸΆπ‘£weakstarinπΏβˆžξ€·0,𝑇;𝐻20(Ξ©)∩𝐻4ξ€Έ,𝑒(Ξ©)πœ€π‘‘π‘šβŸΆπ‘’π‘‘,π‘£πœ€π‘‘π‘šβŸΆπ‘£π‘‘weakstarπΏβˆžξ€·0,𝑇;𝐻20ξ€Έ,𝑒(Ξ©)πœ€π‘‘π‘‘π‘šβŸΆπ‘’π‘‘π‘‘,π‘£πœ€π‘‘π‘‘π‘šβŸΆπ‘£π‘‘π‘‘weakstar𝐿2ξ€·0,𝑇;𝐿2ξ€Έ,(Ξ©)Ξ”π‘’πœ€π‘šβŸΆΞ”π‘’,Ξ”π‘£πœ€π‘šβŸΆΞ”π‘£weakstarinπΏβˆžξ€·0,𝑇;𝐿2(ξ€Έ,𝐾Ω)1π‘’πœ€π‘‘π‘‘π‘šβŸΆπΎ1𝑒𝑑𝑑,𝐾2π‘£πœ€π‘‘π‘‘π‘šβŸΆπΎ2𝑣𝑑𝑑weakstarinπΏβˆžξ€·0,𝑇;𝐿2ξ€Έ,Ξ”(Ξ©)2π‘’πœ€π‘šβŸΆΞ”2𝑒,Ξ”2π‘£πœ€π‘šβŸΆΞ”2𝑣weakstarin𝐿2ξ€·0,𝑇;𝐿2(ξ€Έ,√Ω)πœ€π‘’πœ€π‘‘π‘‘π‘šβŸΆβˆšπœ€π‘’π‘‘π‘‘,βˆšπœ€π‘£πœ€π‘‘π‘‘π‘šβŸΆβˆšπœ€π‘£π‘‘π‘‘weakstarinπΏβˆžξ€·0,𝑇;𝐿2(ξ€Έ,𝑀‖‖𝑒Ω)πœ€π‘š(‖‖𝑑)2+β€–β€–π‘£πœ€π‘š(‖‖𝑑)2ξ‚ξ€·βˆ’Ξ”π‘’πœ€π‘šβˆ’Ξ”π‘£πœ€π‘šξ€Έξ€·(βŸΆπ‘€β€–π‘’π‘‘)β€–2+‖𝑣(𝑑)β€–2ξ€Έ(βˆ’Ξ”π‘’βˆ’Ξ”π‘£)weakstarinπΏβˆžξ€·0,𝑇;𝐿2(ξ€Έ.Ξ©)(3.24) Now, multiplying (3.6), (3.7) by πœƒβˆˆπ’Ÿ(0,𝑇) and integrating over (0,𝑇), we arrive at ξ€œπ‘‡0𝐾1𝑒+πœ€πœ€π‘‘π‘‘π‘šξ€Έξ€œ(𝑑),π‘€πœƒ(𝑑)𝑑𝑑+𝑇0ξ€·βˆ’Ξ”π‘’πœ€π‘šξ€Έ+ξ€œ(𝑑),βˆ’Ξ”π‘€πœƒ(𝑑)𝑑𝑑𝑇0π‘€ξ‚€β€–β€–π‘’πœ€π‘šβ€–β€–(𝑑)2+β€–β€–π‘£πœ€π‘šβ€–β€–(𝑑)2ξ‚ξ€·βˆ’Ξ”π‘’πœ€π‘šξ€Έ+ξ€œ(𝑑),π‘€πœƒπ‘‘π‘‘π‘‡0ξ€·π‘’πœ€π‘‘π‘šξ€Έ,π‘€πœƒπ‘‘π‘‘=0,βˆ€π‘€βˆˆπ‘‰π‘šξ€œ,βˆ€πœƒβˆˆπ’Ÿ(0,𝑇),𝑇0𝐾2𝑣+πœ€πœ€π‘‘π‘‘π‘š(ξ€Έξ€œπ‘‘),π‘§πœƒ(𝑑)𝑑𝑑+𝑇0ξ€·βˆ’Ξ”π‘£πœ€π‘š(ξ€Έ+ξ€œπ‘‘),βˆ’Ξ”π‘§πœƒ(𝑑)𝑑𝑑𝑇0π‘€ξ‚€β€–β€–π‘’πœ€π‘š(‖‖𝑑)2+β€–β€–π‘£πœ€π‘š(‖‖𝑑)2ξ‚ξ€·βˆ’Ξ”π‘£πœ€π‘š(ξ€Έ+ξ€œπ‘‘),π‘§πœƒπ‘‘π‘‘π‘‡0ξ€·π‘£πœ€π‘‘π‘šξ€Έ,π‘§πœƒπ‘‘π‘‘=0,βˆ€π‘§βˆˆπ‘‰π‘š,βˆ€πœƒβˆˆπ’Ÿ(0,𝑇).(3.25) The convergences (3.24) are sufficient to pass to the limit in (3.25) in order to obtain 𝐾1𝑒𝑑𝑑+Ξ”2‖𝑒+𝑀‖𝑒(𝑑)2β€–+‖𝑣(𝑑)2ξ€Έ(βˆ’Ξ”π‘’)+𝑒𝑑=0in𝐿∞locξ€·0,∞;𝐿2ξ€Έ,𝐾(Ξ©)2𝑣𝑑𝑑+Ξ”2ξ€·(𝑣+𝑀‖𝑒𝑑)β€–2+‖𝑣(𝑑)β€–2ξ€Έ(βˆ’Ξ”π‘£)+𝑣𝑑=0in𝐿∞locξ€·0,∞;𝐿2(ξ€Έ,Ξ©)(3.26) and (𝑒,𝑣) satisfies (3.1).
The uniqueness and initial conditions follow by using the standard arguments as in Lions [6]. The proof is now complete.

4. Asymptotic Behavior

In this section we study the asymptotic behavior of solutions to the system (1.1)–(1.5). We show using the Nakao method that the system (1.1)–(1.5) is exponentially stable. The main result of this paper is given by the following theorem.

Theorem 4.1. Let one take (𝑒0,𝑣0)∈(𝐻10(Ξ©)∩𝐻4(Ξ©))2, and   (𝑒1,𝑣1)∈(𝐻20(Ξ©))2 and let one suppose that assumptions (2.5), (2.6), and (2.7) hold. Then, the solution (𝑒,𝑣) of system (1.1)–(1.5) satisfies ||𝐾11/2𝑒𝑑||(𝑑)2+||𝐾21/2𝑣𝑑||(𝑑)2+||||Δ𝑒(𝑑)2+||||Δ𝑣(𝑑)2+ξ€œπ‘‘π‘‘+1ξ‚€||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)2𝑑𝑠≀𝛼1π‘’βˆ’π›Ό2𝑑,(4.1) for all 𝑑β‰₯1, where 𝛼1 and 𝛼2 are positive constants.

Proof. Multiplying (3.2) by 𝑒𝑑(𝑑) and 𝑣𝑑(𝑑), respectively, and integrating over Ξ©, we obtain 12𝑑||𝐾𝑑𝑑11/2𝑒𝑑||(𝑑)2+||𝐾21/2𝑣𝑑||(𝑑)2+||||Δ𝑒(𝑑)2+||||Δ𝑣(𝑑)2+ξ‚Šπ‘€ξ€·β€–π‘’(𝑑)β€–2+‖𝑣(𝑑)β€–2ξ€Έξ‚„+||𝑒𝑑||(𝑑)2+||𝑣𝑑||(𝑑)2=ξ‚΅πœ•πΎ1πœ•π‘‘,𝑒2𝑑+ξ‚΅(𝑑)πœ•πΎ2πœ•π‘‘,𝑣2𝑑,(𝑑)(4.2) where ξ‚Šξ€œπ‘€(𝑠)=𝑠0𝑀(𝜏)π‘‘πœ.(4.3) Using (2.6) and considering 𝛿>0 sufficiently small, we get 12𝑑||𝐾𝑑𝑑11/2𝑒𝑑||(𝑑)2+||𝐾21/2𝑣𝑑||(𝑑)2+||||Δ𝑒(𝑑)2+||||Δ𝑣(𝑑)2+ξ‚Šπ‘€ξ€·β€–π‘’(𝑑)β€–2+‖𝑣(𝑑)β€–2ξ€Έξ‚„+ξ€·1βˆ’π›Ώβˆ’πΎ0ξ€Έξ‚€||𝑒𝐢(𝛿)𝑑||(𝑑)2+||𝑣𝑑||(𝑑)2≀0,(4.4) where 𝐾0=max{𝐾1,𝐾2} with 𝐾𝑖=max[]π‘ βˆˆπ‘‘,𝑑+1ξ€½esssup𝐾𝑖(ξ€Ύπ‘₯,𝑠),𝑖=1,2.(4.5) Integrating (4.4) from 0to𝑑, we have 𝐸(𝑑)+1βˆ’π›Ώβˆ’πΎ0ξ€Έξ€œπΆ(𝛿)𝑑0ξ‚€||𝑒𝑑(||𝑠)2+||𝑣𝑑(||𝑠)2𝑑𝑠≀𝐸(0),(4.6) where 1𝐸(𝑑)=2||𝐾11/2𝑒𝑑||(𝑑)2+||𝐾21/2𝑣𝑑||(𝑑)2+||||Δ𝑣(𝑑)2+||||Δ𝑣(𝑑)2+ξ‚Šπ‘€ξ€·β€–π‘’(𝑑)β€–2+‖𝑣(𝑑)β€–2ξ€Έξ‚„(4.7) is the energy associated with the system (1.1)–(1.5). From (4.4) we conclude that 𝑑𝑑𝑑𝐸(𝑑)≀0βˆ€π‘‘βˆˆ(0,∞),(4.8) that is, 𝐸(𝑑) is bounded and increasing in (0,∞).
Integrating (4.4) from 𝜏1to𝜏2, 0<𝜏1<𝜏2<∞, we arrive at πΈξ€·πœ2ξ€Έ+ξ€·1βˆ’π›Ώβˆ’πΎ0ξ€Έξ€œπΆ(𝛿)𝜏2𝜏1ξ‚€||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)2ξ‚ξ€·πœπ‘‘π‘ β‰€πΈ1ξ€Έ.(4.9) Taking 𝜏1=𝑑 and 𝜏2=𝑑+1 in (4.9), we get ξ€œπ‘‘π‘‘+1ξ‚€||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)21𝑑𝑠≀1βˆ’π›Ώβˆ’πΎ0[]𝐢(𝛿)𝐸(𝑑)βˆ’πΈ(𝑑+1)=𝐹2(𝑑).(4.10) Therefore, there exist two points 𝑑1∈[𝑑,𝑑+1/4] and 𝑑2∈[𝑑+3/4,𝑑+1], such that ||𝑒𝑑𝑑𝑖||+||𝑣𝑑𝑑𝑖||≀4𝐹(𝑑),𝑖=1,2.(4.11) Making the inner product in 𝐿2(Ξ©) of (1.1) and (1.2) by 𝑒(𝑑) and 𝑣(𝑑), respectively, and summing up the result we obtain 𝑑𝐾𝑑𝑑1𝑒𝑑+𝑑(𝑑),𝑒(𝑑)𝐾𝑑𝑑2π‘£π‘‘ξ€Έβˆ’|||√(𝑑),𝑣(𝑑)𝐾1𝑒𝑑|||(𝑑)2βˆ’|||√𝐾2𝑣𝑑|||(𝑑)2+||||Δ𝑒(𝑑)2+||||Δ𝑣(𝑑)2ξ€·+𝑀‖𝑒(𝑑)β€–2+‖𝑣(𝑑)β€–2‖𝑒(𝑑)β€–2+‖𝑣(𝑑)β€–2ξ€Έ+𝑒𝑑+𝑣(𝑑),𝑒(𝑑)𝑑=ξ‚΅(𝑑),𝑣(𝑑)πœ•πΎ1π‘’πœ•π‘‘π‘‘ξ‚Ά+ξ‚΅(𝑑),𝑒(𝑑)πœ•πΎ2π‘£πœ•π‘‘π‘‘ξ‚Ά.(𝑑),𝑣(𝑑)(4.12) Integrating from 𝑑1 to 𝑑2 and using (2.6), and (2.7) we have 𝛽1βˆ’πœ†1ξ‚Άξ€œπ‘‘2𝑑1ξ‚€||||Δ𝑒(𝑠)2+||||Δ𝑣(𝑠)2≀𝐾𝑑𝑠1𝑒𝑑𝑑1𝑑,𝑒1βˆ’ξ€·πΎξ€Έξ€Έ1𝑒𝑑𝑑2𝑑,𝑒2+𝐾2𝑣𝑑𝑑1𝑑,𝑣1βˆ’ξ€·πΎξ€Έξ€Έ2𝑣𝑑𝑑2𝑑,𝑣2+ξ€·ξ€Έξ€Έ1+𝛿+𝐾0ξ€Έξ€œπΆ(𝛿)𝑑2𝑑1ξ€·||𝑒𝑑||||||+||𝑣(𝑠)𝑒(𝑠)𝑑||||||ξ€Έ(𝑠)𝑣(𝑠)𝑑𝑠+𝐾0ξ€œπ‘‘2𝑑1ξ‚€||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)2𝑑𝑠.(4.13) Let us consider 𝐢>0 such that ||||||||,||||||||𝑒(𝑠)≀𝐢Δ𝑒(𝑠)𝑣(𝑠)≀𝐢Δ𝑣(𝑠)(4.14) and we take 𝑑>0 sufficiently small Then we have. ξ€·1+𝛿+𝐾0𝐢||𝑒(𝛿)𝑑||||𝑒||+||𝑣(𝑠)(𝑠)𝑑||||𝑣||≀(𝑠)(𝑠)1+𝛿+𝐾0𝐢(𝛿)2𝑑||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)2||||+𝑑Δ𝑒(𝑠)2+||||Δ𝑣(𝑠)2,||𝐾1𝑒𝑑𝑑1𝑑,𝑒1+𝐾2𝑣𝑑𝑑1𝑑,𝑣1βˆ’ξ€·πΎξ€Έξ€Έ1𝑒𝑑𝑑2𝑑,𝑒2βˆ’ξ€·πΎξ€Έξ€Έ2𝑣𝑑𝑑2𝑑,𝑣2||≀𝐢𝐾0esssup[]π‘ βˆˆπ‘‘,𝑑+1||||ξ€·||𝑒Δ𝑒(𝑠)𝑑𝑑1ξ€Έ||+||𝑒𝑑𝑑2ξ€Έ||ξ€Έ+𝐢𝐾0esssup[]π‘ βˆˆπ‘‘,𝑑+1||||ξ€·||𝑣Δ𝑣(𝑠)𝑑𝑑1ξ€Έ||+||𝑣𝑑𝑑2ξ€Έ||ξ€Έ.(4.15) Thus, substituting (4.15) into (4.13), we arrive at 𝛽1βˆ’πœ†1ξ‚Άξ€œπ‘‘2𝑑1ξ‚€||||Δ𝑒(𝑠)2+||||Δ𝑣(𝑠)2𝑑𝑠≀𝐾0ξ€œπ‘‘2𝑑1ξ‚€||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)2ξ‚ξ€œπ‘‘π‘ +𝑑𝑑2𝑑1ξ‚€||||Δ𝑒(𝑠)2+||||Δ𝑣(𝑠)2𝑑𝑠+𝐢𝐾0esssup[]π‘ βˆˆπ‘‘,𝑑+1||||ξ€·||𝑒Δ𝑒(𝑠)𝑑𝑑1ξ€Έ||+||𝑒𝑑𝑑2ξ€Έ||ξ€Έ+𝐢𝐾0esssup[]π‘ βˆˆπ‘‘,𝑑+1||||ξ€·||𝑣Δ𝑣(𝑠)𝑑𝑑1ξ€Έ||+||𝑣𝑑𝑑2ξ€Έ||ξ€Έ.(4.16) Applying (4.10) and (4.11) in (4.16), we have ξ€œπ‘‘2𝑑1ξ‚€||||Δ𝑒(𝑠)2+||||Δ𝑣(𝑠)2𝑑𝑠≀𝐢1𝐹2(𝑑)+esssup[]π‘ βˆˆπ‘‘,𝑑+1ξ€·||||+||||Δ𝑒(𝑠)Δ𝑣(𝑠)𝐹(𝑑)=𝐺2(𝑑),(4.17) where 𝐢1 is a positive constant independent of 𝑑. Therefore, from (4.10) and (4.17) we obtain ξ€œπ‘‘2𝑑1ξ‚€||𝑒𝑑(||𝑠)2+||𝑣𝑑(||𝑠)2+||||Δ𝑒(𝑠)2+||||Δ𝑣(𝑠)2𝑑𝑠≀𝐹2(𝑑)+𝐺2(𝑑).(4.18) Hence, there exists π‘‘βˆ—βˆˆ[𝑑1,𝑑2] such that ||π‘’π‘‘ξ€·π‘‘βˆ—ξ€Έ||2+||π‘£π‘‘ξ€·π‘‘βˆ—ξ€Έ||2+||ξ€·π‘‘Ξ”π‘’βˆ—ξ€Έ||2+||ξ€·π‘‘Ξ”π‘£βˆ—ξ€Έ||2𝐹≀22(𝑑)+𝐺2ξ€».(𝑑)(4.19) Consequently, ξ‚Šπ‘€ξ€·β€–π‘’(𝑑)β€–2+‖𝑣(𝑑)β€–2≀𝐢2𝐹2(𝑑)+𝐺2ξ€»,(𝑑)(4.20) where 𝐢2=2π‘š0𝐢,π‘š0=maxξ€·0≀𝑠≀‖𝑒(π‘‘βˆ—)β€–2+‖𝑣(π‘‘βˆ—)β€–2ξ€Έ<βˆžπ‘€(𝑠)(4.21) and 𝐢 is a positive constant such that ‖𝑒(π‘‘βˆ—)β€–2≀𝐢|Δ𝑒(π‘‘βˆ—)|2.
From (4.19) and (4.20), we have πΈξ€·π‘‘βˆ—ξ€Έβ‰€πΆ3𝐹2(𝑑)+𝐺2ξ€».(𝑑)(4.22) Since 𝐸(𝑑) is increasing, we have esssup[]π‘ βˆˆπ‘‘,𝑑+1𝑑𝐸(𝑠)β‰€πΈβˆ—ξ€Έ+ξ€·1+𝛿+𝐾0ξ€Έξ€œπΆ(𝛿)𝑑2𝑑1ξ‚€||𝑒𝑑(||𝑠)2+||𝑣𝑑(||𝑠)2𝑑𝑠.(4.23) Now, by (4.10), (4.22), and (4.23) we get 𝐸(𝑑)≀𝐢4[],𝐸(𝑑)βˆ’πΈ(𝑑+1)(4.24) where 𝐢4 is a positive constant. Then, by the Nakao lemma (see [12]) we conclude that 𝐸(𝑑)≀𝑏1π‘’βˆ’π›Ό2𝑑,βˆ€π‘‘β‰₯1,(4.25) where 𝑏1 and 𝛼2 are positive constants, that is, |||√𝐾1𝑒𝑑|||(𝑑)2+|||√𝐾2𝑣𝑑|||(𝑑)2+||||Δ𝑒(𝑑)2+||||Δ𝑣(𝑑)2ξ‚Šπ‘€ξ€·β€–π‘’(𝑑)β€–2+‖𝑣(𝑑)β€–2≀2𝑏1π‘’βˆ’π›Ό2𝑑.(4.26) Using (2.7) we obtain |||√𝐾1𝑒𝑑|||(𝑑)2+|||√𝐾2𝑣𝑑|||(𝑑)2+||||Δ𝑒(𝑑)2+||||Δ𝑣(𝑑)2≀2𝑏1π‘š1π‘’βˆ’π›Ό2𝑑,(4.27) where π‘š1𝛽=1βˆ’πœ†1>0.(4.28) From (4.10) we have ξ€œπ‘‘π‘‘+1ξ‚€||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)21𝑑𝑠≀1βˆ’π›Ώβˆ’πΎ0[]𝐢(𝛿)𝐸(𝑑)βˆ’πΈ(𝑑+1)≀𝐸(𝑑)≀𝑏1π‘’βˆ’π›Ό2𝑑.(4.29) Therefore, from (4.27) and (4.29) we conclude that |||√𝐾1𝑒𝑑|||(𝑑)2+|||√𝐾2𝑣𝑑|||(𝑑)2+||||Δ𝑒(𝑑)2+||||Δ𝑣(𝑑)2+ξ€œπ‘‘π‘‘+1ξ‚€||𝑒𝑑||(𝑠)2+||𝑣𝑑||(𝑠)2𝑑𝑠≀𝛼1π‘’βˆ’π›Ό2𝑑,βˆ€π‘‘β‰₯1,(4.30) where 𝛼1 and 𝛼2 are positive constants. Now, the proof is complete.