About this Journal Submit a Manuscript Table of Contents
ISRN Mathematical Physics
Volume 2012 (2012), Article ID 659289, 14 pages
http://dx.doi.org/10.5402/2012/659289
Research Article

Exponential Decay to the Degenerate Nonlinear Coupled Beams System with Weak Damping

1Programa de Pós-Graduação, em Matemática Eestatística, Faculdade de Matemática, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Corrêa 01, 66075-110 Belém, PA, Brazil
2Departamento de Matemática, Estatística e Informática, Universidade do Estado do Pará, Rua do Una 156, Telégrafo, 66113-200 Belém, PA, Brazil

Received 10 April 2012; Accepted 3 July 2012

Academic Editors: D. Dürr and W.-H. Steeb

Copyright © 2012 R. F. C. Lobato et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Woinowsky-Krieger, “The effect of an axial force on the vibration of hinged bars,” Journal of Applied Mechanics, vol. 17, pp. 35–36, 1950. View at Zentralblatt MATH
  2. J. G. Eisley, “Nonlinear vibration of beams and rectangular plates,” Zeitschrift für Angewandte Mathematik und Physik, vol. 15, pp. 167–175, 1964. View at Zentralblatt MATH
  3. D. Burgreen, “Free vibrations of a pin-ended column with constant distance between pin ends,” Journal of Applied Mechanics, vol. 18, pp. 135–139, 1951.
  4. R. W. Dickey, “Free vibrations and dynamic buckling of the extensible beam,” Journal of Mathematical Analysis and Applications, vol. 29, pp. 443–454, 1970. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. J. M. Ball, “Initial-boundary value problems for an extensible beam,” Journal of Mathematical Analysis and Applications, vol. 42, pp. 61–90, 1973. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. J. L. Lions, Quelques Méethodes de Réesolution des Problèemes aux Limites non Lineaires, Dunod, Paris, France, 1969.
  7. G. P. Menzala, “On classical solutions of a quasilinear hyperbolic equation,” Nonlinear Analysis, vol. 3, no. 5, pp. 613–627, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. O. C. Ramos, “Regularity property for the nonlinear beam operator,” Anais da Academia Brasileira de Ciências, vol. 61, no. 1, pp. 15–25, 1989. View at Zentralblatt MATH
  9. D. C. Pereira, S. D. B. Menezes, J. Ferreira, and E. A. Oliveira, “Existence, uniqueness and uniform decay for the nonlinear beam degenerate equation with weak damping,” Applied Mathematics and Computation, vol. 154, no. 2, pp. 555–565, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. L. A. Medeiros, “On a new class of nonlinear wave equations,” Journal of Mathematical Analysis and Applications, vol. 69, no. 1, pp. 252–262, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. D. C. Pereira, “Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation,” Nonlinear Analysis, vol. 14, no. 8, pp. 613–623, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. M. Nakao, “Decay of solutions of some nonlinear evolution equations,” Journal of Mathematical Analysis and Applications, vol. 60, no. 2, pp. 542–549, 1977. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. S. G. Miklin, Variational Methods in Mathematical Physics, Pergamon Press, Oxford, 1964.