About this Journal Submit a Manuscript Table of Contents
ISRN Botany
Volume 2012 (2012), Article ID 682824, 12 pages
http://dx.doi.org/10.5402/2012/682824
Review Article

Heterosis: Many Genes, Many Mechanisms—End the Search for an Undiscovered Unifying Theory

Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA

Received 24 September 2012; Accepted 11 October 2012

Academic Editors: H.-J. Huang, K.-B. Lim, and S. Schornack

Copyright © 2012 Shawn Kaeppler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Lewis, “Why are mixed-race people perceived as more attractive?” Perception, vol. 39, no. 1, pp. 136–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Mingroni, “Resolving the IQ paradox: heterosis as a cause of the Flynn effect and other trends,” Psychological Review, vol. 114, no. 3, pp. 806–829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M.A. Woodley, “Heterosis doesn't cause the Flynn effect: a critical examination of Mingroni (2007),” Psychological Review, vol. 118, no. 4, pp. 689–693, 2011. View at Publisher · View at Google Scholar
  4. H. Campbell, A. D. Carothers, I. Rudan et al., “Effects of genome-wide heterozygosity on a range of biomedically relevant human quantitative traits,” Human Molecular Genetics, vol. 16, no. 2, pp. 233–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Khongsdier and N. Mukherjee, “Effects of heterosis on growth in height and its segments: a cross-sectional study of the Khasi girls in Northeast India,” Annals of Human Biology, vol. 30, no. 5, pp. 605–621, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Koziel, D. P. Danel, and M. Zareba, “Isolation by distance between spouses and its effect on children's growth in height,” American Journal of Physical Anthropology, vol. 146, no. 1, pp. 14–19, 2011. View at Publisher · View at Google Scholar
  7. V. Jakubec, “Productivity of crosses based on prolific breeds of sheep,” Livestock Production Science, vol. 4, no. 4, pp. 379–392, 1977. View at Scopus
  8. B. Gjerde and T. Refstie, “Complete diallel cross between five strains of Atlantic salmon,” Livestock Production Science, vol. 11, no. 2, pp. 207–226, 1984. View at Scopus
  9. O. Syrstad, “Heterosis in Bos taurus × Bos indicus crosses,” Livestock Production Science, vol. 12, no. 4, pp. 299–307, 1985. View at Scopus
  10. G. Bittante, L. Gallo, and P. Montobbio, “Estimated breed additive effects and direct heterosis for growth and carcass traits of heavy pigs,” Livestock Production Science, vol. 34, no. 1-2, pp. 101–114, 1993. View at Scopus
  11. J. S. Gavora, R. W. Fairfull, B. F. Benkel, W. J. Cantwell, and J. R. Chambers, “Prediction of heterosis from DNA fingerprints in chickens,” Genetics, vol. 144, no. 2, pp. 777–784, 1996. View at Scopus
  12. J. A. Birchler, D. L. Auger, and N. C. Riddle, “In search of the molecular basis of heterosis,” Plant Cell, vol. 15, no. 10, pp. 2236–2239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Birchler, H. Yao, and S. Chudalayandi, “Unraveling the genetic basis of hybrid vigor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 12957–12958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Birchler, H. Yao, S. Chudalayandi, D. Vaiman, and R. A. Veitia, “Heterosis,” Plant Cell, vol. 22, no. 7, pp. 2105–2112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Crow, “90 years ago: the beginning of hybrid maize.,” Genetics, vol. 148, no. 3, pp. 923–928, 1998. View at Scopus
  16. D. N. Duvick, “Heterosis: feeding people and protecting resources,” in Genetics and Exploitation of Heterosis in Crop Plants, J. G. Coors and S. Pandey, Eds., pp. 19–29, Crop Science Society of America, Madison, Wis, USA, 1999.
  17. Z. B. Lippman and D. Zamir, “Heterosis: revisiting the magic,” Trends in Genetics, vol. 23, no. 2, pp. 60–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. C. W. Stuber, “Heterosis in plant breeding,” Plant Breeding Reviews, vol. 12, pp. 227–251, 1994.
  19. N. M. Springer and R. M. Stupar, “Allelic variation and heterosis in maize: how do two halves make more than a whole?” Genome Research, vol. 17, no. 3, pp. 264–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. J. Chen, “Molecular mechanisms of polyploidy and hybrid vigor,” Trends in Plant Science, vol. 15, no. 2, pp. 57–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. H. K. Hayes, “Development of the heterosis concept,” in Heterosis, J. W. Gowen, Ed., pp. 49–65, Iowa State College Press, Ames, Iowa, USA, 1952.
  22. G. F. Shull, “Beginnings of the heterosis concept,” in Heterosis, J. W. Gowen, Ed., pp. 14–48, Iowa State College Press, Ames, Iowa, USA, 1952.
  23. I. L. Goldman, “Inbreeding and outbreeding in the development of a modern heterosis concept,” in Genetics and Exploitation of Heterosis in Crop Plants, J. G. Coors and S. Pandey, Eds., pp. 7–18, Crop Science Society of America, Madison, Wis, USA, 1999.
  24. G. N. Collins, “The importance of broad breeding in corn,” USDA Bureau of Plant Industry Bulletin, vol. 141, part 4, pp. 33–42, 1909.
  25. C. Darwin, On the Various Contrivances by Which British and Foreign Orchids are Fertilised by Insects, and On the Good Effects of Intercrossing, Murray, London, UK, 1862.
  26. E. M. East, “Inbreeding in corn,” Reports of the Connecticut Agricultural Experiment Station, vol. 1907, pp. 419–428, 1908.
  27. E. M. East and D. F. Jones, Inbreeding and Outbreeding, J.B. Lippincott Co., Philadelphia, Pa, USA, 1919.
  28. D. F. Jones, “The effects of inbreeding and crossbreeding upon development,” Connecticut Agricultural Experiment Station Bulletin, vol. 207, pp. 419–428, 1918.
  29. G. E. Morrow and F. D. Gardner, “Field experiments with corn, 1893,” University of Illinois Agricultural Experiment Station Bulletin, vol. 31, pp. 333–360, 1894.
  30. G. F. Shull, “The composition of a field of maize,” American Rabbit Breeders Association, vol. 5, pp. 51–59, 1908.
  31. D. Charlesworth and J. H. Willis, “The genetics of inbreeding depression,” Nature Reviews Genetics, vol. 10, no. 11, pp. 783–796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. A. Flint-Garcia, E. S. Buckler, P. Tiffin, E. Ersoz, and N. M. Springer, “Heterosis is prevalent for multiple traits in diverse maize germplasm.,” PloS one, vol. 4, no. 10, p. e7433, 2009. View at Scopus
  33. A. R. Hallauer, M. J. Carena, and J. B. Miranda Filho, “Quantitative genetics in maize breeding,” in Chapter 10: Heterosis, pp. 477–523, Springer, New York, NY, USA, 2010.
  34. R. H. Moll, M. F. Lindsey, and H. F. Robinson, “Estimates of genetic variances and the level of dominance in maize,” Genetics, vol. 49, pp. 411–423, 1963.
  35. C. O. Gardner and J. H. Lonnquist, “Linkage and the degree of dominance of genes controlling quantitative characters in maize,” Agronomy Journal, vol. 51, pp. 524–528, 1959.
  36. W. A. Russell, S. A. Eberhart, and U. A. Vega, “Recurrent selection for specific combining ability for yield in two maize populations,” Crop Science, vol. 13, pp. 257–261, 1978.
  37. M. D. Edwards, C. W. Stuber, and J. F. Wendel, “Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action.,” Genetics, vol. 116, no. 1, pp. 113–125, 1987. View at Scopus
  38. C. W. Stuber, S. E. Lincoln, D. W. Wolff, T. Helentjaris, and E. S. Lander, “Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers,” Genetics, vol. 132, no. 3, pp. 823–839, 1992. View at Scopus
  39. G. I. Graham, D. W. Wolff, and C. W. Stuber, “Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping,” Crop Science, vol. 37, no. 5, pp. 1601–1610, 1997. View at Scopus
  40. A. Lariepe, B. Mangin, S. Jasson et al., “The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.),” Genetics, vol. 190, pp. 795–811, 2012. View at Publisher · View at Google Scholar
  41. J. Xiao, J. Li, L. Yuan, and S. D. Tanksley, “Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers,” Genetics, vol. 140, no. 2, pp. 745–754, 1995. View at Scopus
  42. D. Schwartz and W. J. Laughner, “A molecular basis for heterosis,” Science, vol. 166, no. 3905, pp. 626–627, 1969. View at Scopus
  43. U. Krieger, Z. B. Lippman, and D. Zamir, “The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato,” Nature Genetics, vol. 42, no. 5, pp. 459–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Semel, J. Nissenbaum, N. Menda et al., “Overdominant quantitative trait loci for yield and fitness in tomato,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 12981–12986, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. P. Wolf and A. R. Hallauer, “Triple testcross analysis to detect epistasis in maize,” Crop Science, vol. 37, no. 3, pp. 763–770, 1997. View at Scopus
  46. B. Kusterer, J. Muminovic, H. F. Utz et al., “Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in arabidopsis,” Genetics, vol. 175, no. 4, pp. 2009–2017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. E. Melchinger, H. P. Piepho, H. F. Utz et al., “Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis,” Genetics, vol. 177, no. 3, pp. 1827–1837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. C. Reif, B. Kusterer, H. P. Piepho et al., “Unraveling epistasis with triple testcross progenies of near-isogenic lines,” Genetics, vol. 181, no. 1, pp. 247–257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. B. Yu, J. X. Li, C. G. Xu et al., “Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 17, pp. 9226–9231, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. Z.-K. Li, L. J. Luo, H. W. Mei et al., “Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components,” Genetics, vol. 158, no. 4, pp. 1755–1771, 2001. View at Scopus
  51. J. Hua, Y. Xing, W. Wu et al., “Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2574–2579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. B. Rood, P. B. Kaufman, H. Abe, and R. P. Pharis, “Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3H]Gibberellin A20,” Plant physiology, vol. 83, pp. 645–651, 1987. View at Scopus
  53. S. B. Rood, R. P. Pharis, M. Koshioka, and D. J. Major, “Gibberellins and heterosis in maize: I. Endogenous gibberellin-like substances,” Plant Physiology, vol. 71, pp. 693–644, 1983.
  54. S. B. Rood, R. I. Buzzell, L. N. Mander, D. Pearce, and R. P. Pharis, “Gibberellins: a phytohormonal basis for heterosis in Maize,” Science, vol. 241, no. 4870, pp. 1216–1218, 1988. View at Scopus
  55. Q. Ma, P. Hedden, and Q. Zhang, “Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes,” Plant Physiology, vol. 156, no. 4, pp. 1905–1920, 2011. View at Publisher · View at Google Scholar
  56. E. S. Buckler, J. B. Holland, P. J. Bradbury et al., “The genetic architecture of maize flowering time,” Science, vol. 325, no. 5941, pp. 714–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. P. Cook, M. D. McMullen, J. B. Holland et al., “Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels,” Plant Physiology, vol. 158, no. 2, pp. 824–834, 2012. View at Publisher · View at Google Scholar
  58. F. Tian, P. J. Bradbury, P. J. Brown et al., “Genome-wide association study of leaf architecture in the maize nested association mapping population,” Nature Genetics, vol. 43, no. 2, pp. 159–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. D. S. Falconer and T. F. C. Mackay, Introduction to Quantitative Genetics, Pearson, Prentice Hall, Edinburgh, Scotland, 4th edition, 1996.
  60. J.-M. Chia, C. Song, P. J. Bradbury et al., “Maize HapMap V2- Capturing variation in a genome in flux,” Nature Genetics, vol. 44, pp. 803–807, 2012. View at Publisher · View at Google Scholar
  61. M. B. Hufford, X. Xu, J. vanHeerwaarden et al., “Population genomics of domestication and improvement in maize,” Nature Genetics, vol. 44, pp. 808–811, 2012. View at Publisher · View at Google Scholar
  62. Y. Jiao, H. Zhao, L. Ren et al., “Genome-wide genetic changes during modern breeding of maize,” Nature Genetics, vol. 44, pp. 812–815, 2012. View at Publisher · View at Google Scholar
  63. J. Lai, R. Li, X. Xu et al., “Genome-wide patterns of genetic variation among elite maize inbred lines,” Nature Genetics, vol. 42, no. 11, pp. 1027–1030, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Xu, X. Liu, S. Ge et al., “Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes,” Nature Biotechnology, vol. 30, pp. 105–111, 2011. View at Publisher · View at Google Scholar
  65. M. Nordborg, T. T. Hu, Y. Ishino et al., “The pattern of polymorphism in Arabidopsis thaliana,” PLoS Biology, vol. 3, no. 7, p. e196, 2005. View at Scopus
  66. M. G. Kidwell and D. Lisch, “Transposable elements as sources of variation in animals and plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 15, pp. 7704–7711, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Fu and H. K. Dooner, “Intraspecific violation of genetic colinearity and its implications in maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 14, pp. 9573–9578, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Brunner, K. Fengler, M. Morgante, S. Tingey, and A. Rafalski, “Evolution of DNA sequence nonhomologies among maize inbreds,” Plant Cell, vol. 17, no. 2, pp. 343–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. N. M. Springer, K. Ying, Y. Fu et al., “Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content,” PLoS Genetics, vol. 5, no. 11, Article ID e1000734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. C. N. Hansey, B. Vaillancourt, R. S. Sekhon, N. de Leon, S. M. Kaeppler, and C. R. Buell, “Maize (Zea mays L.) genome diversity revealed by RNA-sequencing,” PLoS One, vol. 7, no. 3, Article ID e33017, 2012. View at Publisher · View at Google Scholar
  71. I. Makarevitch, R. M. Stupar, A. L. Iniguez et al., “Natural variation for alleles under epigenetic control by the maize chromomethylase Zmet2,” Genetics, vol. 177, no. 2, pp. 749–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. Gore, J. M. Chia, R. J. Elshire et al., “A first-generation haplotype map of maize,” Science, vol. 326, no. 5956, pp. 1115–1117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. W. F. Tracy and M. A. Chandler, “The historical and biological basis of the concept of heterotic patterns in corn belt dent maize,” in Hallauer Plant Breeding Symposium, K. R. Lamkey and M. Lee, Eds., pp. 219–233, Blackwell, Ames, Iowa, USA, 2006.
  74. R. M. Stupar and N. M. Springer, “Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid,” Genetics, vol. 173, no. 4, pp. 2199–2210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. R. A. Swanson-Wagner, Y. Jia, R. DeCook, L. A. Borsuk, D. Nettleton, and P. S. Schnable, “All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 6805–6810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. R. A. Swanson-Wagner, R. Decook, Y. Jia et al., “Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids,” Science, vol. 326, no. 5956, pp. 1118–1120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Guo, M. A. Rupe, C. Zinselmeier, J. Habben, B. A. Bowen, and O. S. Smith, “Allelic variation of gene expression in maize hybrids,” Plant Cell, vol. 16, no. 7, pp. 1707–1716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Guo, M. A. Rupe, X. Yang et al., “Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis,” Theoretical and Applied Genetics, vol. 113, no. 5, pp. 831–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Freeling, M. R. Woodhouse, S. Subramaniam, G. Turco, D. Lisch, and J. C. Schnable, “Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants,” Current Opinion in Plant Biology, vol. 15, no. 2, pp. 131–139, 2012. View at Publisher · View at Google Scholar
  80. D. Ding, Y. Wang, M. Han et al., “MicroRNA transcriptomic analysis of heterosis during maize seed germination,” PLoS ONE, vol. 7, no. 6, Article ID e39578, 2012. View at Publisher · View at Google Scholar
  81. D. W. Ng, J. Lu, and Z. J. Chen, “Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility,” Current Opinion in Plant Biology, vol. 15, no. 2, pp. 154–161, 2012. View at Publisher · View at Google Scholar
  82. W. T. Barber, W. Zhang, H. Win et al., “Repeat associated small RNAs vary among parents and following hybridization in maize,” Proceedings of the National Academy of Sciences, vol. 109, no. 26, pp. 10444–10449, 2012. View at Publisher · View at Google Scholar
  83. A. Paschold, C. Marcon, N. Hoecker, and F. Hochholdinger, “Molecular dissection of heterosis manifestation during early maize root development,” Theoretical and Applied Genetics, vol. 120, no. 2, pp. 383–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Hoecker, B. Keller, N. Muthreich et al., “Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends,” Genetics, vol. 179, no. 3, pp. 1275–1283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Hoecker, T. Lamkemeyer, B. Sarholz et al., “Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines,” Proteomics, vol. 8, no. 18, pp. 3882–3894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Marcon, A. Schützenmeister, W. Schütz, J. Madlung, H. P. Piepho, and F. Hochholdinger, “Nonadditive protein accumulation patterns in maize (Zea mays L.) hybrids during embryo development,” Journal of Proteome Research, vol. 9, no. 12, pp. 6511–6522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. W. Wang, B. Meng, X. Ge et al., “Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines,” Proteomics, vol. 8, no. 22, pp. 4808–4821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Dahal, B. P. Mooney, and K. J. Newton, “Specific changes in total and mitochondrial proteomes are associated with higher levels of heterosis in maize hybrids,” Plant Journal, vol. 72, no. 1, pp. 70–83, 2012. View at Publisher · View at Google Scholar
  89. R. H. Moll, W. S. Salhuana, and H. F. Robinson, “Heterosis and genetic diversity in variety crosses of maize,” Crop Science, vol. 2, no. 3, pp. 197–198, 1962. View at Publisher · View at Google Scholar
  90. A. E. Melchinger, M. M. Messmer, M. Lee, W. L. Woodman, and K. R. Lamkey, “Diversity and relationships among U.S. inbreds revealed by restriction fragment length polymorphisms,” Crop Science, vol. 31, no. 3, pp. 669–678, 1991. View at Publisher · View at Google Scholar
  91. R. Bernardo, “Relationship between single-cross performance and molecular marker heterozygosity,” Theoretical and Applied Genetics, vol. 83, no. 5, pp. 628–634, 1995. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Bernardo, “Prediction of maize single-cross performance using RFLPs and information from related hybrids,” Crop Science, vol. 34, no. 1, pp. 20–25, 1994. View at Scopus
  93. P. A. Marsan, P. Castiglioni, F. Fusari, M. Kuiper, and M. Motto, “Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers,” Theoretical and Applied Genetics, vol. 96, no. 2, pp. 219–227, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. A. E. Melchinger, “Genetic diversity and heterosis,” in Genetics and Exploitation of Heterosis in Crop Plants, J. G. Coors and S. Pandey, Eds., pp. 99–118, Crop Science Society of America, Madison, Wis, USA, 1999.
  95. S. Kaeppler, “Heterosis: one boat at a time, or a rising tide?” New Phytologist, vol. 189, no. 4, pp. 900–902, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Becker and D. Weigel, “Epigenetic variation: origin and transgenerational inheritance,” Current Opinion in Plant Biology, vol. 15, no. 1, pp. 1–6, 2012. View at Publisher · View at Google Scholar
  97. R. A. Brink, “A genetic change associated with the R locus in maize which is directed and potentially reversible,” Genetics, vol. 41, no. 4, pp. 872–889, 1956.
  98. V. L. Chandler and M. Stam, “Chromatin conversations: mechanisms and implications of paramutation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 532–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. J. B. Hollick and N. M. Springer, “Epigenetic phenomena and epigenomics in maize,” in Epigenomics, A. C. Ferguson-Smith, J. M. Greally, and R. A. Martienssen, Eds., pp. 119–147, Springer Media B.V., Houton, The Netherlands, 2009.
  100. R. K. Chodavarapu, S. Feng, B. Ding et al., “Transcriptome and methylome interactions in rice hybrids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 30, pp. 12040–12045, 2012. View at Publisher · View at Google Scholar
  101. H. Shen, H. He, J. Li et al., “Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids,” Plant Cell, vol. 24, no. 3, pp. 875–892, 2012. View at Publisher · View at Google Scholar
  102. A. S. Tsfartis, M. Kafka, A. Polidoros, and E. Tani, “Epigentic changes in maize DNA and heterosis,” in Genetics and Exploitation of Heterosis in Crop Plants, J. G. Coors and S. Pandey, Eds., pp. 195–203, Crop Science Society of America, Madison, Wis, USA, 1999.
  103. P. Vergeer, N. Wagemaker, and N. J. Ouborg, “Evidence for an epigenetic role in inbreeding depression,” Biology Letters, vol. 8, no. 5, pp. 798–801, 2012. View at Publisher · View at Google Scholar
  104. S. A. Goff, “A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding,” New Phytologist, vol. 189, no. 4, pp. 923–937, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. Z. J. Chen, “Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids,” Annual Review of Plant Biology, vol. 58, pp. 377–406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. R. W. Groose, L. E. Talbert, W. P. Kojis, and E. T. Bingham, “Progressive heterosis in autotetraploid alfalfa: studies using two types of inbreds,” Crop Science, vol. 29, no. 5, pp. 1173–1177, 1989. View at Publisher · View at Google Scholar
  107. E. T. Bingham, R. W. Groose, D. R. Woodfield, and K. K. Kidwell, “Complementary gene interactions in alfalfa are greater in autotetraploids than diploids,” Crop Science, vol. 34, no. 4, pp. 823–829, 1994. View at Scopus
  108. J. A. Birchler, N. C. Riddle, D. L. Auger, and R. A. Veitia, “Dosage balance in gene regulation: biological implications,” Trends in Genetics, vol. 21, no. 4, pp. 219–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. J. A. Birchler and R. A. Veitia, “Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 37, pp. 14746–14753, 2012. View at Publisher · View at Google Scholar