About this Journal Submit a Manuscript Table of Contents
ISRN Pediatrics
Volume 2012 (2012), Article ID 685151, 9 pages
http://dx.doi.org/10.5402/2012/685151
Research Article

Regional Variation on Rates of Bronchopulmonary Dysplasia and Associated Risk Factors

1Department of Clinical Epidemiology and Biostatistics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110001, D.C., Colombia
2Division of Neonatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
3Division of Research and Information, College of Medicine, Florida International University, Miami, FL, USA

Received 6 March 2012; Accepted 9 May 2012

Academic Editors: G. J. Casimir, D. L. Jeppesen, S. K. Patole, and T. F. Yeh

Copyright © 2012 María Ximena Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Jobe and E. Bancalari, “Bronchopulmonary dysplasia,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 7, pp. 1723–1729, 2001. View at Scopus
  2. R. A. Ehrenkranz, M. C. Walsh, B. R. Vohr et al., “Validation of the National Institutes of health consensus definition of bronchopulmonary dysplasia,” Pediatrics, vol. 116, no. 6, pp. 1353–1360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Hislop, J. S. Wigglesworth, R. Desai, and V. Aber, “The effects of preterm delivery and mechanical ventilation on human lung growth,” Early Human Development, vol. 15, no. 3, pp. 147–164, 1987. View at Scopus
  4. M. Palta, D. Gabbert, M. R. Weinstein et al., “Multivariate assessment of traditional risk factors for chronic lung disease in very low birth weight neonates,” Journal of Pediatrics, vol. 119, no. 2, pp. 285–292, 1991. View at Scopus
  5. L. J. Van Marter, M. Pagano, E. N. Allred, A. Leviton, and K. C. K. Kuban, “Rate of bronchopulmonary dysplasia as a function of neonatal intensive care practices,” Journal of Pediatrics, vol. 120, no. 6, pp. 938–946, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Farstad and D. Bratlid, “Incidence and prediction of bronchopulmonary dysplasia in a cohort of premature infants,” Acta Paediatrica, International Journal of Paediatrics, vol. 83, no. 1, pp. 19–24, 1994. View at Scopus
  7. D. D. Marshall, M. Kotelchuck, T. E. Young, C. L. Bose, P. A. C. Lauree Kruyer, and T. M. O'Shea, “Risk factors for chronic lung disease in the surfactant era: a North Carolina population-based study of very low birth weight infants,” Pediatrics, vol. 104, no. 6, pp. 1345–1350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. P. J. Sanchez and J. A. Regan, “Ureaplasma urealyticum colonization and chronic lung disease in low birth weight infants,” Pediatric Infectious Disease Journal, vol. 7, no. 8, pp. 542–546, 1988. View at Scopus
  9. E. E. L. Wang, H. Frayha, J. Watts et al., “Role of Ureaplasma urealyticum and other pathogens in the development of chronic lung disease of prematurity,” Pediatric Infectious Disease Journal, vol. 7, no. 8, pp. 547–551, 1988. View at Scopus
  10. A. H. Jobe and M. Ikegami, “Antenatal infection/inflammation and postnatal lung maturation and injury,” Respiratory Research, vol. 2, no. 1, pp. 27–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. L. J. Van Marter, O. Dammann, E. N. Allred et al., “Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants,” Journal of Pediatrics, vol. 140, no. 2, pp. 171–176, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Rojas, A. Gonzalez, E. Bancalari, N. Claure, C. Poole, and G. Silva-Neto, “Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease,” Journal of Pediatrics, vol. 126, no. 4, pp. 605–610, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Farstad and D. Bratlid, “Pulmonary effects of closure of patent ductus arteriosus in premature infants with severe respiratory distress syndrome,” European Journal of Pediatrics, vol. 153, no. 12, pp. 903–905, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. L. J. Van Marter, A. Leviton, E. N. Allred, M. Pagano, and K. C. K. Kuban, “Hydration during the first days of life and the risk of bronchopulmonary dysplasia in low birth weight infants,” Journal of Pediatrics, vol. 116, no. 6, pp. 942–949, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. A. R. Spitzer, W. W. Fox, and M. Delivoria-Papadopoulos, “Maximum diuresis—a factor in predicting recovery from respiratory distress syndrome and the development of bronchopulmonary dysplasia,” Journal of Pediatrics, vol. 98, no. 3, pp. 476–479, 1981. View at Scopus
  16. B. A. Darlow and P. J. Graham, “Vitamin A supplementation to prevent mortality and short and long-term morbidity in very low birthweight infants,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD000501, 2007. View at Scopus
  17. K. L. Watterberg, J. S. Gerdes, C. H. Cole et al., “Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial,” Pediatrics, vol. 114, no. 6, pp. 1649–1657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Kwinta, M. Bik-Multanowski, Z. Mitkowska, T. Tomasik, M. Legutko, and J. J. Pietrzyk, “Genetic risk factors of bronchopulmonary dysplasia,” Pediatric Research, vol. 64, no. 6, pp. 682–688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Tapia, D. Agost, A. Alegria et al., “Bronchopulmonary dysplasia: incidence, risk factors and resource utilization in a population of South American very low birth weight infants,” Jornal de Pediatria, vol. 82, no. 1, pp. 15–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Rojas, J. M. Lozano, M. X. Rojas et al., “Very early surfactant without mandatory ventilation in premature infants treated with early continuous positive airway pressure: a randomized, controlled trial,” Pediatrics, vol. 123, no. 1, pp. 137–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Lozano, O. R. Duque, T. Buitrago, and S. Behaine, “Pulse oximetry reference values at high altitude,” Archives of Disease in Childhood, vol. 67, no. 3, pp. 299–301, 1992. View at Scopus
  22. S. Balasubramanian, N. Suresh, R. Raeshmi, and K. Kaarthigeyan, “Comparison of oxygen saturation levels by pulse oximetry in healthy children aged 1 month to 5 years residing at an altitude of 1500 metres and at sea level,” Annals of Tropical Paediatrics, vol. 28, no. 4, pp. 267–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Ballard, J. C. Khoury, K. Wedig, L. Wang, B. L. Eilers-Walsman, and R. Lipp, “New Ballard Score, expanded to include extremely premature infants,” Journal of Pediatrics, vol. 119, no. 3, pp. 417–423, 1991. View at Scopus
  24. G. F. Gonzales and V. Tapia, “Birth weight charts for gestational age in 63 620 healthy infants born in Peruvian public hospitals at low and at high altitude,” Acta Paediatrica, International Journal of Paediatrics, vol. 98, no. 3, pp. 454–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Levy, M. P. Fink, J. C. Marshall et al., “2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference,” Critical Care Medicine, vol. 31, no. 4, pp. 1250–1256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Papile, J. Burstein, R. Burstein, and H. Koffler, “Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm,” Journal of Pediatrics, vol. 92, no. 4, pp. 529–534, 1978. View at Scopus
  27. D. K. Richardson, J. D. Corcoran, G. J. Escobar, and S. K. Lee, “SNAP-II and SNAPPE-II: simplified newborn illness severity and mortality risk scores,” Journal of Pediatrics, vol. 138, no. 1, pp. 92–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. K. De Meer, H. S. A. Heymans, and W. G. Zijlstra, “Physical adaptation of children to life at high altitude,” European Journal of Pediatrics, vol. 154, no. 4, pp. 263–272, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. K. De Meer, R. Bergman, J. S. Kusner, and H. W. A. Voorhoeve, “Differences in physical growth of Aymara and Quechua children living at high altitude in Peru,” American Journal of Physical Anthropology, vol. 90, no. 1, pp. 59–75, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Gamboa and E. Marticorena, “Pulmonary arterial pressure in newborn infants in high altitude,” Archivos del Instituto de Biologia Andina, vol. 4, no. 2, pp. 55–66, 1971. View at Scopus
  31. F. Sime, N. Banchero, D. Peñaloza, R. Gamboa, J. Cruz, and E. Marticorena, “Pulmonary hypertension in children born and living at high altitudes,” American Journal of Cardiology, vol. 11, no. 2, pp. 143–149, 1963. View at Scopus
  32. S. Niermeyer, E. M. Shaffer, E. Thilo, C. Corbin, and L. G. Moore, “Arterial oxygenation and pulmonary arterial pressure in healthy neonates and infants at high altitude,” Journal of Pediatrics, vol. 123, no. 5, pp. 767–772, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Lavadenz, E. Palmero, F. Loma, and R. Carreon, “Patent ductus arteriosus with pulmonary hypertension,” Arquivos Brasileiros de Cardiologia, vol. 47, no. 5, pp. 323–327, 1986. View at Scopus
  34. C. Y. Miao, J. S. Zuberbuhler, and J. R. Zuberbuhler, “Prevalence of congenital cardiac anomalies at high altitude,” Journal of the American College of Cardiology, vol. 12, no. 1, pp. 224–228, 1988. View at Scopus
  35. S. Niermeyer, “Cardiopulmonary transition in the high altitude infant,” High Altitude Medicine and Biology, vol. 4, no. 2, pp. 225–239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Niermeyer, P. A. Mollinedo, and L. Huicho, “Child health and living at high altitude,” Archives of Disease in Childhood, vol. 94, no. 10, pp. 806–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Gonzalez, I. R. S. Sosenko, J. Chandar, H. Hummler, N. Claure, and E. Bancalari, “Influence of infection on patent ductus arteriosus and chronic lung disease in premature infants weighing 1000 grams or less,” Journal of Pediatrics, vol. 128, no. 4, pp. 470–478, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Rocha, O. Ribeiro, and H. Guimarães, “Fluid and electrolyte balance during the first week of life and risk of bronchopulmonary dysplasia in the preterm neonate,” Clinics, vol. 65, no. 7, pp. 663–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. B. H. Yoon, R. Romero, K. S. Kim et al., “A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia,” American Journal of Obstetrics and Gynecology, vol. 181, no. 4, pp. 773–779, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. R. F. Soll and C. J. Morley, “Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD000510, 2001. View at Scopus
  41. T. P. Stevens, E. W. Harrington, M. Blennow, and R. F. Soll, “Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD003063, 2007. View at Scopus