About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2012 (2012), Article ID 702858, 9 pages
http://dx.doi.org/10.5402/2012/702858
Research Article

C3b-Independent Complement Activation in Ischemia/Reperfusion Mesenteric Tissue Injury in Autoimmune Prone (B6.MRL/lpr) Mice

1Division of Rheumatology, Walter Reed Army Medical Center, Washington, DC 20889, USA
2Department of Rheumatology, San Antonio Military Medical Center, San Antonio, TX 78234, USA
3Department of Rheumatology, Fort Belvoir Community Hospital, Fort Belvoir, VA 32060, USA
4Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA

Received 11 June 2012; Accepted 11 July 2012

Academic Editors: P. A. Berg, R. Merino, and B. Stijlemans

Copyright © 2012 J. Tofferi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mantovani, M. A. Cassatella, C. Costantini, and S. Jaillon, “Neutrophils in the activation and regulation of innate and adaptive immunity,” Nature Reviews Immunology, vol. 11, no. 8, pp. 519–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Jarchum and E. G. Pamer, “Regulation of innate and adaptive immunity by the commensal microbiota,” Current Opinion in Immunology, vol. 23, no. 3, pp. 353–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Koeppen, T. Eckle, and H. K. Eltzschig, “The hypoxia-inflammation link and potential drug targets,” Current Opinion in Anaesthesiology, vol. 24, no. 4, pp. 363–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Iwasaki and R. Medzhitov, “Regulation of adaptive immunity by the innate immune system,” Science, vol. 327, no. 5963, pp. 291–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Furukawa and T. Yoshimasu, “Animal models of spontaneous and drug-induced cutaneous lupus erythematosus,” Autoimmunity Reviews, vol. 4, no. 6, pp. 345–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Morel, “Genetics of SLE: evidence from mouse models,” Nature Reviews Rheumatology, vol. 6, no. 6, pp. 348–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. de Groot and U. Rauen, “Ischemia-reperfusion injury: processes in pathogenetic networks: a review,” Transplantation Proceedings, vol. 39, no. 2, pp. 481–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kokura, R. E. Wolf, T. Yoshikawa, H. Ichikawa, D. N. Granger, and T. Y. Aw, “Endothelial cells exposed to anoxia/reoxygenation are hyperadhesive to T-lymphocytes: kinetics and molecular mechanisms,” Microcirculation, vol. 7, no. 1, pp. 13–23, 2000. View at Scopus
  9. N. F. Cerqueira, C. A. Hussni, W. B. Yoshida, and C. R. Padovani, “Systemic evaluation on ischemia and reperfusion injury of splanchnic organs in rats,” Acta Cirurgica Brasileira, vol. 24, no. 4, pp. 290–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. F. Cerqueira, C. A. Hussni, and W. B. Yoshida, “Pathophysiology of mesenteric ischemia/reperfusion: a review,” Acta Cirurgica Brasileira, vol. 20, no. 4, pp. 336–343, 2005. View at Scopus
  11. R. D. Minshall and A. B. Malik, “Transport across the endothelium: regulation of endothelial permeability,” in Handbook of Experimental Pharmacology, pp. 107–144, 2006.
  12. M. Phillipson, J. Kaur, P. Colarusso, C. M. Ballantyne, and P. Kubes, “Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration,” PLoS ONE, vol. 3, no. 2, Article ID e1649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Dejana, E. Tournier-Lasserve, and B. M. Weinstein, “The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications,” Developmental Cell, vol. 16, no. 2, pp. 209–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Kulik, S. D. Fleming, C. Moratz et al., “Pathogenic natural antibodies recognizing annexin IV are required to develop intestinal ischemia-reperfusion injury,” Journal of Immunology, vol. 182, no. 9, pp. 5363–5373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Weeks, C. Moratz, A. Zacharia et al., “Decay-accelerating factor attenuates remote ischemia-reperfusion-initiated organ damage,” Clinical Immunology, vol. 124, no. 3, pp. 311–327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Rehrig, S. D. Fleming, J. Anderson et al., “Complement inhibitor, complement receptor 1-related gene/protein y-Ig attenuates intestinal damage after the onset of mesenteric ischemia/reperfusion injury in mice,” Journal of Immunology, vol. 167, no. 10, pp. 5921–5927, 2001. View at Scopus
  17. J. P. Williams, T. T. V. Pechet, M. R. Weiser et al., “Intestinal reperfusion injury is mediated by IgM and complement,” Journal of Applied Physiology, vol. 86, no. 3, pp. 938–942, 1999. View at Scopus
  18. W. Zhou, C. A. Farrar, K. Abe et al., “Predominant role for C5b-9 in renal ischemia/reperfusion injury,” The Journal of Clinical Investigation, vol. 105, no. 10, pp. 1363–1371, 2000. View at Scopus
  19. S. D. Fleming, M. Monestier, and G. C. Tsokos, “Accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice,” Journal of Immunology, vol. 173, no. 6, pp. 4230–4235, 2004. View at Scopus
  20. H. Sekine, C. M. Reilly, I. D. Molano et al., “Complement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice,” Journal of Immunology, vol. 166, no. 10, pp. 6444–6451, 2001. View at Scopus
  21. C. Atkinson, F. Qiao, H. Song, G. S. Gilkeson, and S. Tomlinson, “Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice,” Journal of Immunology, vol. 180, no. 2, pp. 1231–1238, 2008. View at Scopus
  22. L. Bao, M. Haas, D. M. Kraus et al., “Administration of a soluble recombinant complement C3 inhibitor protects against renal disease in MRL/lpr mice,” Journal of the American Society of Nephrology, vol. 14, no. 3, pp. 670–679, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Markiewski and J. D. Lambris, “The role of complement in inflammatory diseases from behind the scenes into the spotlight,” American Journal of Pathology, vol. 171, no. 3, pp. 715–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. V. Carroll and R. B. Sim, “Complement in health and disease,” Advanced Drug Delivery Reviews, vol. 63, pp. 965–975, 2011.
  25. S. Nasiri, M. Karimifar, Z. S. Bonakdar, and M. Salesi, “Correlation of ESR, C3, C4, anti-DNA and lupus activity based on British isles lupus assessment group index in patients of rheumatology clinic,” Rheumatology International, vol. 30, no. 12, pp. 1605–1609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. C. Liu, A. H. Kao, D. M. Hawkins et al., “Lymphocyte-bound complement activation products as biomarkers for diagnosis of systemic lupus erythematosus,” Clinical and Translational Science, vol. 2, no. 4, pp. 300–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Crispín, S. N. C. Liossis, K. Kis-Toth et al., “Pathogenesis of human systemic lupus erythematosus: recent advances,” Trends in Molecular Medicine, vol. 16, no. 2, pp. 47–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Edgerton, J. C. Crispín, C. M. Moratz et al., “IL-17 producing CD4+ T cells mediate accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice,” Clinical Immunology, vol. 130, no. 3, pp. 313–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Karpel-Massler, S. D. Fleming, M. Kirschfink, and G. C. Tsokos, “Human C1 esterase inhibitor attenuates murine mesenteric ischemia/reperfusion induced local organ injury,” Journal of Surgical Research, vol. 115, no. 2, pp. 247–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. D. Fleming, T. Shea-Donohue, J. M. Guthridge et al., “Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire,” Journal of Immunology, vol. 169, no. 4, pp. 2126–2133, 2002. View at Scopus
  31. M. Ling, S. J. Piddlesden, and B. P. Morgan, “A component of the medicinal herb ephedra blocks activation in the classical and alternative pathways of complement,” Clinical and Experimental Immunology, vol. 102, no. 3, pp. 582–588, 1995. View at Scopus
  32. E. I. B. Peerschke, B. Andemariam, W. Yin, and J. B. Bussel, “Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura,” British Journal of Haematology, vol. 148, no. 4, pp. 638–645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. I. B. Peerschke, W. Yin, D. R. Alpert, R. A. S. Roubey, J. E. Salmon, and B. Ghebrehiwet, “Serum complement activation on heterologous platelets is associated with arterial thrombosis in patients with systemic lupus erythematosus and antiphospholipid antibodies,” Lupus, vol. 18, no. 6, pp. 530–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Huber-Lang, J. V. Sarma, F. S. Zetoune et al., “Generation of C5a in the absence of C3: a new complement activation pathway,” Nature Medicine, vol. 12, no. 6, pp. 682–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. C. T. Esmon, “The interactions between inflammation and coagulation,” British Journal of Haematology, vol. 131, no. 4, pp. 417–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Nayak, J. Ferluga, A. G. Tsolaki, and U. Kishore, “The non-classical functions of the classical complement pathway recognition subcomponent C1q,” Immunology Letters, vol. 131, no. 2, pp. 139–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Ritis, M. Doumas, D. Mastellos et al., “A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways,” Journal of Immunology, vol. 177, no. 7, pp. 4794–4802, 2006. View at Scopus
  38. K. Oikonomopoulou, D. Ricklin, P. A. Ward, and J. D. Lambris, “Interactions between coagulation and complement-their role in inflammation,” Seminars in Immunopathology, vol. 34, no. 1, pp. 151–165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Bossi, E. I. Peerschke, B. Ghebrehiwet, and F. Tedesco, “Cross-talk between the complement and the kinin system in vascular permeability,” Immunology Letters, vol. 140, pp. 7–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. T. Esmon, J. Xu, and F. Lupu, “Innate immunity and coagulation,” Journal of Thrombosis and Haemostasis, vol. 9, supplement 1, pp. 182–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Shariat-Madar, F. Mahdi, and A. H. Schmaier, “Assembly and activation of the plasma kallikrein/kinin system: a new interpretation,” International Immunopharmacology, vol. 2, no. 13-14, pp. 1841–1849, 2002. View at Publisher · View at Google Scholar · View at Scopus