About this Journal Submit a Manuscript Table of Contents
ISRN Cardiology
Volume 2012 (2012), Article ID 718789, 14 pages
http://dx.doi.org/10.5402/2012/718789
Review Article

Physical Activity, Health Benefits, and Mortality Risk

1Cardiology Department, Veterans Affairs Medical Center, 50 Irving Street NW, Washington, DC 20422, USA
2Division of Cardiology, Department of Medicine, Georgetown University, 4000 Reservoir Road NW, Washington, DC 20057-2197, USA
3Physical Therapy and Health Care Services, George Washington University, 2121 I Street, Washington, DC 20052, USA

Received 5 August 2012; Accepted 7 September 2012

Academic Editors: H.-K. Kim and J. N. Myers

Copyright © 2012 Peter Kokkinos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. N. Morris, J. A. Heady, P. A. B. Raffle, C. G. Roberts, and J. W. Parks, “Coronary heart-disease and physical activity of work,” The Lancet, vol. 262, no. 6796, pp. 1111–1120, 1953. View at Scopus
  2. P. Kokkinos, J. Myers, J. P. Kokkinos, et al., “Exercise capacity and mortality in black and white men,” Circulation, vol. 117, no. 5, pp. 614–622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Kokkinos and J. Myers, “Exercise and physical activity: clinical outcomes and applications,” Circulation, vol. 122, no. 16, pp. 1637–1648, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. N. Blair, H. W. Kohl, R. S. Paffenbarger, D. G. Clark, K. H. Cooper, and L. W. Gibbons, “Physical fitness and all-cause mortality: a prospective study of healthy men and women,” JAMA, vol. 262, no. 17, pp. 2395–2401, 1989. View at Scopus
  5. S. N. Blair, J. B. Kampert, H. W. Kohl et al., “Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women,” JAMA, vol. 276, no. 3, pp. 205–210, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. S. N. Blair, H. W. Kohl, C. E. Barlow, R. S. Paffenbarger, L. W. Gibbons, and C. A. Macera, “Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men,” JAMA, vol. 273, no. 14, pp. 1093–1098, 1995. View at Scopus
  7. J. E. Manson, P. Greenland, A. Z. LaCroix et al., “Walking compared with vigorous exercise for the prevention of cardiovascular events in women,” The New England Journal of Medicine, vol. 347, no. 10, pp. 716–725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Manson, F. B. Hu, J. W. Rich-Edwards et al., “A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women,” The New England Journal of Medicine, vol. 341, no. 9, pp. 650–658, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Myers, M. Prakash, V. Froelicher, D. Do, S. Partington, and J. Edwin Atwood, “Exercise capacity and mortality among men referred for exercise testing,” The New England Journal of Medicine, vol. 346, no. 11, pp. 793–801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Mora, N. Cook, J. E. Buring, P. M. Ridker, and I. M. Lee, “Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms,” Circulation, vol. 116, no. 19, pp. 2110–2118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. U. M. Kujala, J. Kaprio, S. Sarna, and M. Koskenvuo, “Relationship of leisure-time physical activity and mortality: the Finnish Twin Cohort,” JAMA, vol. 279, no. 6, pp. 440–444, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Myers, A. Kaykha, S. George et al., “Fitness versus physical activity patterns in predicting mortality in men,” American Journal of Medicine, vol. 117, no. 12, pp. 912–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mora, R. F. Redberg, Y. Cui et al., “Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study,” JAMA, vol. 290, no. 12, pp. 1600–1607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Gulati, D. K. Pandey, M. F. Arnsdorf et al., “Exercise capacity and the risk of death in women: the St. James Women Take Heart Project,” Circulation, vol. 108, no. 13, pp. 1554–1559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. W. Gregg, J. A. Cauley, K. Stone et al., “Relationship of changes in physical activity and mortality among older women,” JAMA, vol. 289, no. 18, pp. 2379–2386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. J. Balady, M. G. Larson, R. S. Vasan, E. P. Leip, C. J. O'Donnell, and D. Levy, “Usefulness of exercise testing in the prediction of coronary disease risk among asymptomatic persons as a function of the Framingham risk score,” Circulation, vol. 110, no. 14, pp. 1920–1925, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Dorn, J. Naughton, D. Imamura, and M. Trevisan, “Results of a multicenter randomized clinical trial of exercise and long- term survival in myocardial infarction patients: the National Exercise and Heart Disease Project (NEHDP),” Circulation, vol. 100, no. 17, pp. 1764–1769, 1999. View at Scopus
  18. T. Y. Goraya, S. J. Jacobsen, P. A. Pellikka et al., “Prognostic value of treadmill exercise testing in elderly persons,” Annals of Internal Medicine, vol. 132, no. 11, pp. 862–870, 2000. View at Scopus
  19. R. S. Paffenbarger, R. T. Hyde, A. L. Wing, I. M. Lee, D. L. Jung, and J. B. Kampert, “The association of changes in physical-activity level and other lifestyle characteristics with mortality among men,” The New England Journal of Medicine, vol. 328, no. 8, pp. 538–545, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. R. S. Paffenbarger, A. L. Wing, and R. T. Hyde, “Physical activity as an index of heart attack risk in college alumni,” American Journal of Epidemiology, vol. 108, no. 3, pp. 161–175, 1978. View at Scopus
  21. R. S. Paffenbarger, R. T. Hyde, A. L. Wing, and C. C. Hsieh, “Physical activity, all-cause mortality, and longevity of college alumni,” The New England Journal of Medicine, vol. 314, no. 10, pp. 605–613, 1986. View at Scopus
  22. M. Tanasescu, M. F. Leitzmann, E. B. Rimm, W. C. Willett, M. J. Stampfer, and F. B. Hu, “Exercise type and intensity in relation to coronary heart disease in men,” JAMA, vol. 288, no. 16, pp. 1994–2000, 2002. View at Scopus
  23. P. Boström, J. Wu, M. P. Jedrychowski et al., “A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, no. 7382, pp. 463–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. K. E. Powell, P. D. Thompson, C. J. Caspersen, and J. S. Kendrick, “Physical activity and the incidence of coronary heart disease,” Annual Review of Public Health, vol. 8, pp. 253–287, 1987. View at Scopus
  25. A. S. Leon, “Physical activity levels and coronary heart disease. Analysis of epidemiologic and supporting studies,” Medical Clinics of North America, vol. 69, no. 1, pp. 3–20, 1985. View at Scopus
  26. S. Punsar and M. J. Karvonen, “Physical activity and coronary heart disease in populations from East and West Finland,” Advances in Cardiology, vol. 18, pp. 196–207, 1976. View at Scopus
  27. P. Kokkinos, A. Manolis, A. Pittaras et al., “Exercise capacity and mortality in hypertensive men with and without additional risk factors,” Hypertension, vol. 53, no. 3, pp. 494–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. I. M. Lee and P. J. Skerrett, “Physical activity and all-cause mortality: what is the dose-response relation?” Medicine and Science in Sports and Exercise, vol. 33, no. 6, pp. S459–S471, 2001. View at Scopus
  29. P. Kokkinos, Physical Activity and Cardiovascular Disease Prevention, Jones and Bartlett, Ontario, Canada, 2010.
  30. P. Kokkinos, J. Myers, C. Faselis et al., “Exercise capacity and mortality in older men: a 20-year follow-up study,” Circulation, vol. 122, no. 8, pp. 790–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. Talanian, S. D. R. Galloway, G. J. F. Heigenhauser, A. Bonen, and L. L. Spriet, “Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women,” Journal of Applied Physiology, vol. 102, no. 4, pp. 1439–1447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. I. Nemoto, H. Gen-No, S. Masuki, K. Okazaki, and H. Nose, “Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people,” Mayo Clinic Proceedings, vol. 82, no. 7, pp. 803–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. M. Haram, O. J. Kemi, S. J. Lee et al., “Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity,” Cardiovascular Research, vol. 81, no. 4, pp. 723–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Wisløff, A. Støylen, J. P. Loennechen et al., “Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study,” Circulation, vol. 115, no. 24, pp. 3086–3094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. N. Myers, “Exercise and fitnesseds,” in Cardio­Vascular Prevention and Rehabilitation, J. Perk and P. Mathes, Eds., pp. 77–87, Springer, London, UK, 2007.
  36. W. L. Haskell, I. M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association,” Circulation, vol. 116, no. 9, pp. 1081–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. N. Morris, “Exercise in the prevention of coronary heart disease: today's best buy in public health,” Medicine and Science in Sports and Exercise, vol. 26, no. 7, pp. 807–814, 1994. View at Scopus
  38. World Health Organization, Obesity: Preventing and Managing the Global Epidemic, WHO, Geneva, Switzerland, 1998.
  39. R. H. Eckel and R. M. Krauss, “American Heart Association call to action: obesity as a major risk factor for coronary heart disease,” Circulation, vol. 97, no. 21, pp. 2099–2100, 1998. View at Scopus
  40. I. M. Lee, J. E. Manson, C. H. Hennekens, and R. S. Paffenbarger, “Body weight and mortality: a 27-year follow-up of middle-aged men,” JAMA, vol. 270, no. 23, pp. 2823–2828, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Manson, W. C. Willett, M. J. Stampfer et al., “Body weight and mortality among women,” The New England Journal of Medicine, vol. 333, no. 11, pp. 677–685, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Stevens, J. Cai, E. R. Pamuk, D. F. Williamson, M. J. Thun, and J. L. Wood, “The effect of age on the association between body-mass index and mortality,” The New England Journal of Medicine, vol. 338, no. 1, pp. 1–7, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. J. P. Koplan and W. H. Dietz, “Caloric imbalance and public health policy,” JAMA, vol. 282, no. 16, pp. 1579–1581, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Bouchard, “The human obesity gene map: the 1998 update,” Obesity Research, vol. 7, no. 1, pp. 111–129, 1999. View at Scopus
  45. Clinical Guidelines on the identification, evaluation and treatment of ovetweight and obesity in adults. National Institute of Health/National Heart. Lung and Blood Institute, 1998.
  46. P. A. Ades, P. D. Savage, M. J. Toth et al., “High-calorie-expenditure exercise: a new approach to cardiac rehabilitation for overweight coronary patients,” Circulation, vol. 119, no. 20, pp. 2671–2678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. G. A. King, E. C. Fitzhugh, D. R. Bassett et al., “Relationship of leisure-time physical activity and occupational activity to the prevalence of obesity,” International Journal of Obesity, vol. 25, no. 5, pp. 606–612, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Wei, J. B. Kampert, C. E. Barlow et al., “Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men,” JAMA, vol. 282, no. 16, pp. 1547–1553, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Sui, M. J. LaMonte, J. N. Laditka et al., “Cardiorespiratory fitness and adiposity as mortality predictors in older adults,” JAMA, vol. 298, no. 21, pp. 2507–2516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. F. B. Hu, W. C. Willett, T. Li, M. J. Stampfer, G. A. Colditz, and J. E. Manson, “Adiposity as compared with physical activity in predicting mortality among women,” The New England Journal of Medicine, vol. 351, no. 26, pp. 2694–2703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Y. Li, J. S. Rana, J. E. Manson et al., “Obesity as compared with physical activity in predicting risk of coronary heart disease in women,” Circulation, vol. 113, no. 4, pp. 499–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. J. LaMonte and S. N. Blair, “Physical activity, cardiorespiratory fitness, and adiposity: contributions to disease risk,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 9, no. 5, pp. 540–546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. P. T. Katzmarzyk, I. Janssen, and C. I. Ardern, “Physical inactivity, excess adiposity and premature mortality,” Obesity Reviews, vol. 4, no. 4, pp. 257–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Oreopoulos, R. Padwal, K. Kalantar-Zadeh, G. C. Fonarow, C. M. Norris, and F. A. McAlister, “Body mass index and mortality in heart failure: a meta-analysis,” American Heart Journal, vol. 156, no. 1, pp. 13–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. P. A. Ades and P. D. Savage, “The obesity paradox: perception vs knowledge,” Mayo Clinic Proceedings, vol. 85, no. 2, pp. 112–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. P. A. McAuley, P. F. Kokkinos, R. B. Oliveira, B. T. Emerson, and J. N. Myers, “Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years,” Mayo Clinic Proceedings, vol. 85, no. 2, pp. 115–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Myers, K. Lata, S. Chowdhury, P. McAuley, N. Jain, and V. Froelicher, “The obesity paradox and weight loss,” American Journal of Medicine, vol. 124, pp. 924–930, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. R. S. Vasan, M. G. Larson, E. P. Leip, W. B. Kannel, and D. Levy, “Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study,” The Lancet, vol. 358, no. 9294, pp. 1682–1686, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. S. MacMahon, R. Peto, J. Cutler et al., “Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias,” The Lancet, vol. 335, no. 8692, pp. 765–774, 1990. View at Publisher · View at Google Scholar · View at Scopus
  61. World Health Organization, World Health Report 2002: Reducing Risks, Promoting Healthy Life, World Health Organization, Geneva, Switzerland, 2002.
  62. M. Gurven, A. D. Blackwell, D. E. Rodríguez, J. Stieglitz, and H. Kaplan, “Does blood pressure inevitably rise with age?: longitudinal evidence among forager-horticulturalists,” Hypertension, vol. 60, no. 1, pp. 25–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. R. H. Grimm, G. A. Grandits, J. A. Cutler et al., “Relationships of quality-of-life measures to long-term lifestyle and drug treatment in the treatment of mild hypertension study,” Archives of Internal Medicine, vol. 157, no. 6, pp. 638–648, 1997. View at Scopus
  64. P. Kokkinos, J. Myers, M. Doumas et al., “Exercise capacity and all-cause mortality in prehypertensive men,” American Journal of Hypertension, vol. 22, no. 7, pp. 735–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. R. H. Fagard, “Exercise characteristics and the blood pressure response to dynamic physical training,” Medicine and Science in Sports and Exercise, vol. 33, no. 6, pp. S484–S492, 2001. View at Scopus
  66. V. A. Cornelissen and R. H. Fagard, “Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors,” Hypertension, vol. 46, no. 4, pp. 667–675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. L. S. Pescatello, B. A. Franklin, R. Fagard, W. B. Farquhar, G. A. Kelley, and C. A. Ray, “American College of Sports Medicine position stand. Exercise and hypertension,” Medicine and Science in Sports and Exercise, vol. 36, no. 3, pp. 533–553, 2004. View at Scopus
  68. P. F. Kokkinos, P. Narayan, and V. Papademetriou, “Exercise as hypertension therapy,” Cardiology Clinics, vol. 19, no. 3, pp. 507–516, 2001. View at Scopus
  69. M. Motoyama, Y. Sunami, F. Kinoshita et al., “Blood pressure lowering effect of low intensity aerobic training in elderly hypertensive patients,” Medicine and Science in Sports and Exercise, vol. 30, no. 6, pp. 818–823, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Ishikawa, T. Ohta, J. Zhang, S. Hashimoto, and H. Tanaka, “Influence of age and gender on exercise training-induced blood pressure reduction in systemic hypertension,” American Journal of Cardiology, vol. 84, no. 2, pp. 192–196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. P. F. Kokkinos, P. Narayan, J. A. Colleran et al., “Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension,” The New England Journal of Medicine, vol. 333, no. 22, pp. 1462–1467, 1995. View at Publisher · View at Google Scholar · View at Scopus
  72. J. M. Hagberg, S. J. Montain, W. H. Martin, and A. A. Ehsani, “Effect of exercise training in 60- to 69-year-old persons with essential hypertension,” American Journal of Cardiology, vol. 64, no. 5, pp. 348–353, 1989. View at Scopus
  73. M. W. Rogers, M. M. Probst, J. J. Gruber, R. Berger, and J. B. Boone, “Differential effects of exercise training intensity on blood pressure and cardiovascular responses to stress in borderline hypertensive humans,” Journal of Hypertension, vol. 14, no. 11, pp. 1369–1375, 1996. View at Publisher · View at Google Scholar · View at Scopus
  74. S. P. Whelton, A. Chin, X. Xin, and J. He, “Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials,” Annals of Internal Medicine, vol. 136, no. 7, pp. 493–503, 2002. View at Scopus
  75. V. K. Somers, J. Conway, J. Johnston, and P. Sleight, “Effects of endurance training on baroreflex sensitivity and blood pressure in borderline hypertension,” The Lancet, vol. 337, no. 8754, pp. 1363–1368, 1991. View at Scopus
  76. R. Zanettini, D. Bettega, O. Agostoni et al., “Exercise training in mild hypertension: effects on blood pressure, left ventricular mass and coagulation factor VII and fibrinogen,” Cardiology, vol. 88, no. 5, pp. 468–473, 1997. View at Scopus
  77. P. Kokkinos, A. Pittaras, A. Manolis et al., “Exercise capacity and 24-h blood pressure in prehypertensive men and women,” American Journal of Hypertension, vol. 19, no. 3, pp. 251–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Palatini, G. R. Graniero, P. Mormino et al., “Relation between physical training and ambulatory blood pressure in stage I hypertensive subjects: results of the HARVEST trial,” Circulation, vol. 90, no. 6, pp. 2870–2876, 1994. View at Scopus
  79. J. A. Blumenthal, W. C. Siegel, and M. Appelbaum, “Failure of exercise to reduce blood pressure in patients with mild hypertension: results of a randomized controlled trial,” JAMA, vol. 266, no. 15, pp. 2098–2104, 1991. View at Publisher · View at Google Scholar · View at Scopus
  80. D. R. Seals and M. J. Reiling, “Effect of regular exercise on 24-hour arterial pressure in older hypertensive humans,” Hypertension, vol. 18, no. 5, pp. 583–592, 1991. View at Scopus
  81. G. A. Kelley and K. S. Kelley, “Progressive resistance exercise and resting blood pressure: a meta- analysis of randomized controlled trials,” Hypertension, vol. 35, no. 3, pp. 838–843, 2000. View at Scopus
  82. B. F. Hurley and S. M. Roth, “Strength training in the elderly: effects on risk factors for age-related diseases,” Sports Medicine, vol. 30, no. 4, pp. 249–268, 2000. View at Scopus
  83. M. E. Nelson, W. J. Rejeski, S. N. Blair et al., “Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association,” Circulation, vol. 116, no. 9, pp. 1094–1105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. M. A. Williams, W. L. Haskell, P. A. Ades et al., “Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism,” Circulation, vol. 116, no. 5, pp. 572–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Kokkinos, A. Pittaras, P. Narayan, C. Faselis, S. Singh, and A. Manolis, “Exercise capacity and blood pressure associations with left ventricular mass in prehypertensive individuals,” Hypertension, vol. 49, no. 1, pp. 55–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. P. F. Kokkinos, P. Narayan, R. D. Fletcher, D. Tsagadopoulos, and V. Papademetriou, “Effects of aerobic training on exaggerated blood pressure response to exercise in African-Americans with severe systemic hypertension treated with indapamide ± verapamil ± enalapril,” American Journal of Cardiology, vol. 79, no. 10, pp. 1424–1426, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. M. J. Turner, R. J. Spina, W. M. Kohrt, and A. A. Ehsani, “Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension,” Journals of Gerontology Series A, vol. 55, no. 4, pp. M245–M251, 2000. View at Scopus
  88. S. N. Blair, H. W. Kohl, C. E. Barlow, and L. W. Gibbons, “Physical fitness and all-cause mortality in hypertensive men,” Annals of Medicine, vol. 23, no. 3, pp. 307–312, 1991. View at Scopus
  89. C. Faselis, M. Doumas, D. Panagiotakos et al., “Body mass index, exercise capacity, and mortality risk in male veterans with hypertension,” American Journal of Hypertension, vol. 25, no. 4, pp. 444–450, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. S. P. Helmrich, D. R. Ragland, R. W. Leung, and R. S. Paffenbarger, “Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 325, no. 3, pp. 147–152, 1991. View at Scopus
  91. J. E. Manson, D. M. Nathan, A. S. Krolewski, M. J. Stampfer, W. C. Willett, and C. H. Hennekens, “A prospective study of exercise and incidence of diabetes among US male physicians,” JAMA, vol. 268, no. 1, pp. 63–67, 1992. View at Publisher · View at Google Scholar · View at Scopus
  92. F. B. Hu, R. J. Sigal, J. W. Rich-Edwards et al., “Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study,” JAMA, vol. 282, no. 15, pp. 1433–1439, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Tuomilehto, J. Lindström, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” The New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Wei, L. W. Gibbons, J. B. Kampert, M. Z. Nichaman, and S. N. Blair, “Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes,” Annals of Internal Medicine, vol. 132, no. 8, pp. 605–611, 2000. View at Scopus
  96. F. B. Hu, M. J. Stampfer, C. Solomon et al., “Physical activity and risk for cardiovascular events in diabetic women,” Annals of Internal Medicine, vol. 134, no. 2, pp. 96–105, 2001. View at Scopus
  97. T. S. Church, M. J. LaMonte, C. E. Barlow, and S. N. Blair, “Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes,” Archives of Internal Medicine, vol. 165, no. 18, pp. 2114–2120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. J. L. Fleg and E. G. Lakatta, “Role of muscle loss in the age-associated reduction in VO2 max,” Journal of Applied Physiology, vol. 65, no. 3, pp. 1147–1151, 1988. View at Scopus
  99. W. P. Seok, B. H. Goodpaster, E. S. Strotmeyer et al., “Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study,” Diabetes Care, vol. 30, no. 6, pp. 1507–1512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. S. W. Park, B. H. Goodpaster, E. S. Strotmeyer et al., “Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study,” Diabetes, vol. 55, no. 6, pp. 1813–1818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. A. A. Sayer, E. M. Dennison, H. E. Syddall, H. J. Gilbody, D. I. W. Phillips, and C. Cooper, “Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg?” Diabetes Care, vol. 28, no. 10, pp. 2541–2542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. R. O. Estacio, E. E. Wolfel, J. G. Regensteiner et al., “Effect of risk factors on exercise capacity in NIDDM,” Diabetes, vol. 45, no. 1, pp. 79–85, 1996. View at Scopus
  103. J. Ness, D. Nassimiha, M. I. Feria, and W. S. Aronow, “Diabetes mellitus in older African-Americans, Hispanics, and whites in an academic hospital-based geriatrics practice,” Coronary Artery Disease, vol. 10, no. 5, pp. 343–346, 1999. View at Scopus
  104. National Center for Health Statistics. Health, United States, 2006 with Chart Book on Trends in the Health of Americans, Department of Health and Human Services, CDC, National Center for Health Statistics, Hyattsville, Md, USA, 2006, http://www.cdc.gov/nchs/data/hus/.
  105. P. Kokkinos, J. Myers, E. Nylen et al., “Exercise capacity and all-cause mortality in African American and caucasian men with type 2 diabetes,” Diabetes Care, vol. 32, no. 4, pp. 623–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. W. Zheng, D. F. McLerran, B. Rolland et al., “Association between body-mass index and risk of death in more than 1 million Asians,” The New England Journal of Medicine, vol. 364, no. 8, pp. 719–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Kokkinos, J. Myers, C. Faselis, M. Doumas, R. Kheirbek, and E. Nylen, “BMI-mortality paradox and fitness in African American and Caucasian men with type 2 diabetes,” Diabetes Care, vol. 35, no. 5, pp. 1021–1027, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. E. S. Nylen, P. Kokkinos, J. Myers, and C. Faselis, “Prognostic effect of exercise capacity on mortality in older adults with diabetes mellitus,” Journal of the American Geriatrics Society, vol. 58, no. 10, pp. 1850–1854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. C. J. Lavie, R. V. Milani, and H. O. Ventura, “Obesity and cardiovascular disease: risk factor, paradox and impact of weight loss,” Journal of the American College of Cardiology, vol. 53, no. 21, pp. 1925–1932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. P. R. Shepherd and B. B. Kahn, “Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus,” The New England Journal of Medicine, vol. 341, no. 4, pp. 248–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Nesher, I. E. Karl, and D. M. Kipnis, “Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle,” American Journal of Physiology, vol. 249, no. 3, part 1, pp. C226–C232, 1985. View at Scopus
  112. J. L. Azevedo, J. O. Carey, W. J. Pories, P. G. Morris, and G. L. Dohm, “Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle,” Diabetes, vol. 44, no. 6, pp. 695–698, 1995. View at Scopus
  113. T. W. Balon and J. L. Nadler, “Evidence that nitric oxide increases glucose transport in skeletal muscle,” Journal of Applied Physiology, vol. 82, no. 1, pp. 359–363, 1997. View at Scopus
  114. M. A. Smutok, C. Reece, P. F. Kokkinos et al., “Aerobic versus strength training for risk factor intervention in middle- aged men at high risk for coronary heart disease,” Metabolism, vol. 42, no. 2, pp. 177–184, 1993. View at Publisher · View at Google Scholar · View at Scopus
  115. J. P. Miller, R. E. Pratley, A. P. Goldberg et al., “Strength training increases insulin action in healthy 50- to 65-yr-old men,” Journal of Applied Physiology, vol. 77, no. 3, pp. 1122–1127, 1994. View at Scopus
  116. P. F. Kokkinos and B. Fernhall, “Physical activity and high density lipoprotein cholesterol levels. What is the relationship?” Sports Medicine, vol. 28, no. 5, pp. 307–314, 1999. View at Publisher · View at Google Scholar · View at Scopus
  117. J. L. Durstine and W. L. Haskell, “Effects of exercise training on plasma lipids and lipoproteins,” Exercise and Sport Sciences Reviews, vol. 22, pp. 477–521, 1994. View at Scopus
  118. A. S. Leon and O. A. Sanchez, “Response of blood lipids to exercise training alone or combined with dietary intervention,” Medicine and Science in Sports and Exercise, vol. 33, no. 6, pp. S502–S515, 2001. View at Scopus
  119. M. L. Stefanick, S. Mackey, M. Sheehan, N. Ellsworth, W. L. Haskell, and P. D. Wood, “Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol,” The New England Journal of Medicine, vol. 339, no. 1, pp. 12–20, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. P. D. Wood, M. L. Stefanick, P. T. Williams, and W. L. Haskell, “The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women,” The New England Journal of Medicine, vol. 325, no. 7, pp. 461–466, 1991. View at Scopus
  121. F. H. Mattson and S. M. Grundy, “Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man,” Journal of Lipid Research, vol. 26, no. 2, pp. 194–202, 1985. View at Scopus
  122. E. A. Brinton, S. Eisenberg, and J. L. Breslow, “A low-fat diet decreases high density lipoprotein (HDL) cholesterol levels by decreasing HDL apolipoprotein transport rates,” The Journal of Clinical Investigation, vol. 85, no. 1, pp. 144–151, 1990. View at Scopus
  123. A. S. Leon, T. Rice, S. Mandel et al., “Blood lipid response to 20 weeks of supervised exercise in a large biracial population: the HERITAGE Family Study,” Metabolism, vol. 49, no. 4, pp. 513–520, 2000. View at Scopus
  124. P. F. Kokkinos, J. C. Holland, A. E. Pittaras, P. Narayan, C. O. Dotson, and V. Papademetriou, “Cardiorespiratory fitness and coronary heart disease risk factor association in women,” Journal of the American College of Cardiology, vol. 26, no. 2, pp. 358–364, 1995. View at Publisher · View at Google Scholar · View at Scopus
  125. S. R. Lindheim, M. Notelovitz, E. B. Feldman, S. Larsen, and F. Y. Khan, “The independent effects of exercise and estrogen on lipids and lipoproteins in postmenopausal women,” Obstetrics and Gynecology, vol. 83, no. 2, pp. 167–172, 1994. View at Scopus
  126. E. F. Binder, S. J. Birge, and W. M. Kohrt, “Effects of endurance exercise and hormone replacement therapy on serum lipids in older women,” Journal of the American Geriatrics Society, vol. 44, no. 3, pp. 231–236, 1996. View at Scopus
  127. W. Drygas, A. Jegler, and H. Kunski, “Study on threshold dose of physical activity in coronary heart disease prevention. Part I. Relationship between leisure time physical activity and coronary risk factors,” International Journal of Sports Medicine, vol. 9, no. 4, pp. 275–278, 1988. View at Scopus
  128. P. F. Kokkinos, J. C. Holland, P. Narayan, J. A. Colleran, C. O. Dotson, and V. Papademetriou, “Miles run per week and high-density lipoprotein cholesterol levels in healthy, middle-aged men: a dose-response relationship,” Archives of Internal Medicine, vol. 155, no. 4, pp. 415–420, 1995. View at Scopus
  129. P. D. Wood, W. L. Haskell, and S. N. Blair, “Increased exercise level and plasma lipoprotein concentrations: a one-year, randomized, controlled study in sedentary, middle-aged men,” Metabolism, vol. 32, no. 1, pp. 31–39, 1983. View at Scopus
  130. P. T. Williams, P. D. Wood, W. L. Haskell, and K. Vranizan, “The effects of running mileage and duration on plasma lipoprotein levels,” JAMA, vol. 247, no. 19, pp. 2674–2679, 1982. View at Publisher · View at Google Scholar · View at Scopus
  131. P. T. Williams, “Interactive effects of exercise, alcohol, and vegetarian diet on coronary artery disease risk factors in 9242 runners: the National Runners' Health Study,” American Journal of Clinical Nutrition, vol. 66, no. 5, pp. 1197–1206, 1997. View at Scopus
  132. P. T. Williams, “High-density lipoprotein cholesterol and other risk factors for coronary heart disease in female runners,” The New England Journal of Medicine, vol. 334, no. 20, pp. 1298–1303, 1996. View at Publisher · View at Google Scholar · View at Scopus
  133. G. K. Hansson, “Mechanisms of disease: inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135–1143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. E. T. H. Yeh and J. T. Willerson, “Coming of age of C-reactive protein: using inflammation markers in cardiology,” Circulation, vol. 107, no. 3, pp. 370–372, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. P. M. Ridker, “Clinical application of C-reactive protein for cardiovascular disease detection and prevention,” Circulation, vol. 107, no. 3, pp. 363–369, 2003. View at Publisher · View at Google Scholar · View at Scopus
  138. P. M. Ridker, R. J. Glynn, and C. H. Hennekens, “C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction,” Circulation, vol. 97, no. 20, pp. 2007–2011, 1998. View at Scopus
  139. C. M. Albert, J. Ma, N. Rifai, M. J. Stampfer, and P. M. Ridker, “Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death,” Circulation, vol. 105, no. 22, pp. 2595–2599, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. D. Aronson, R. Sella, M. Sheikh-Ahmad et al., “The association between cardiorespiratory fitness and C-reactive protein in subjects with the metabolic syndrome,” Journal of the American College of Cardiology, vol. 44, no. 10, pp. 2003–2007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. J. M. McGavock, S. Mandic, I. V. Muhll et al., “Low cardiorespiratory fitness is associated with elevated C-reactive protein levels in women with type 2 diabetes,” Diabetes Care, vol. 27, no. 2, pp. 320–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. F. Mattusch, B. Dufaux, O. Heine, I. Mertens, and R. Rost, “Reduction of the plasma concentration of C-reactive protein following nine months of endurance training,” International Journal of Sports Medicine, vol. 21, no. 1, pp. 21–24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  143. J. L. Abramson and V. Vaccarino, “Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults,” Archives of Internal Medicine, vol. 162, no. 11, pp. 1286–1292, 2002. View at Scopus
  144. E. S. Ford, “Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults,” Epidemiology, vol. 13, no. 5, pp. 561–568, 2002. View at Scopus
  145. M. J. Davies and A. C. Thomas, “Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina,” British Heart Journal, vol. 53, no. 4, pp. 363–373, 1985. View at Scopus
  146. R. Ciampricotti, J. W. Deckers, R. Taverne, M. El Gamal, L. Relik-van Wely, and J. Pool, “Characteristics of conditioned and sedentary men with acute coronary syndromes,” American Journal of Cardiology, vol. 73, no. 4, pp. 219–222, 1994. View at Publisher · View at Google Scholar · View at Scopus
  147. A. J. Hammoudeh and J. I. Haft, “Coronary-plaque rupture in acute coronary syndromes triggered by snow shoveling,” The New England Journal of Medicine, vol. 335, no. 26, pp. 2001–2002, 1996. View at Publisher · View at Google Scholar · View at Scopus
  148. A. P. Burke, A. Farb, G. T. Malcom, Y. H. Liang, J. E. Smialek, and R. Virmani, “Plaque rupture and sudden death related to exertion in men with coronary artery disease,” JAMA, vol. 281, no. 10, pp. 921–926, 1999. View at Publisher · View at Google Scholar · View at Scopus
  149. J. H. Kim, R. Malhotra, G. Chiampas et al., “Cardiac arrest during long-distance running races,” The New England Journal of Medicine, vol. 366, no. 2, pp. 130–140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. P. D. Thompson, “cardiovascular risks of exercise,” in Exercise and Sports Cardiology, pp. 127–145, McGraw-Hill, New York, NY, USA, 2001.
  151. S. Giri, P. D. Thompson, F. J. Kiernan et al., “Clinical and angiographic characteristics of exertion-related acute myocardial infarction,” JAMA, vol. 282, no. 18, pp. 1731–1736, 1999. View at Publisher · View at Google Scholar · View at Scopus
  152. C. M. Albert, M. A. Mittleman, C. U. Chae, I. M. Lee, C. H. Hennekens, and J. E. Manson, “Triggering of sudden death from cardiac causes by vigorous exertion,” The New England Journal of Medicine, vol. 343, no. 19, pp. 1355–1361, 2000. View at Publisher · View at Google Scholar · View at Scopus
  153. M. A. Mittleman, M. Maclure, G. H. Tofler, J. B. Sherwood, R. J. Goldberg, and J. E. Muller, “Triggering of acute myocardial infarction by heavy physical exertion—protection against triggering by regular exertion,” The New England Journal of Medicine, vol. 329, no. 23, pp. 1677–1683, 1993. View at Publisher · View at Google Scholar · View at Scopus
  154. S. N. Willich, M. Lewis, H. Lowel, H. R. Arntz, F. Schubert, and R. Schroder, “Physical exertion as a trigger of acute myocardial infarction,” The New England Journal of Medicine, vol. 329, no. 23, pp. 1684–1690, 1993. View at Publisher · View at Google Scholar · View at Scopus
  155. P. D. Thompson, E. J. Funk, R. A. Carleton, and W. Q. Sturner, “Incidence of death during jogging in Rhode Island from 1975 through 1980,” JAMA, vol. 247, no. 18, pp. 2535–2538, 1982. View at Publisher · View at Google Scholar · View at Scopus
  156. S. P. Van Camp and R. A. Peterson, “Cardiovascular complications of outpatient cardiac rehabilitation programs,” JAMA, vol. 256, no. 9, pp. 1160–1163, 1986. View at Scopus
  157. W. L. Haskell, “Cardiovascular complications during exercise training of cardiac patients,” Circulation, vol. 57, no. 5, pp. 920–924, 1978. View at Scopus