About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2012 (2012), Article ID 724230, 11 pages
http://dx.doi.org/10.5402/2012/724230
Research Article

Calculation of Thermal Pressure Coefficient of Lithium Fluid by Data

Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran

Received 20 September 2012; Accepted 9 October 2012

Academic Editors: F. M. Cabrerizo, H. Reis, and E. B. Starikov

Copyright © 2012 Vahid Moeini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Monnin and M. Dubois, “Thermodynamics of the LiOH + H2O system,” Journal of Chemical and Engineering Data, vol. 50, no. 4, pp. 1109–1113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Roehlich, F. Tepper, and R. L. Rankin, “Surface tension of four alkali metals to 1000 °C,” Journal of Chemical and Engineering Data, vol. 13, no. 4, pp. 518–521, 1968. View at Scopus
  3. W. D. Weatherford Jr., R. K. Johnston, and M. L. Valtierra, “Kinematic viscosity of liquid rubidium from 67 ° to 688 °C,” Journal of Chemical and Engineering Data, vol. 9, no. 4, pp. 520–524, 1964. View at Scopus
  4. N. Rai, J. I. Siepmann, N. E. Schultz, and R. B. Ross, “Pressure dependence of the hildebrand solubility parameter and the internal pressure: Monte Carlo simulations for external pressures up to 300 MPa,” Journal of Physical Chemistry C, vol. 111, no. 43, pp. 15634–15641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Fandiño, M. J. P. Comuñas, L. Lugo, E. R. López, and J. Fernández, “Density measurements under pressure for mixtures of pentaerythritol ester lubricants. Analysis of a density-viscosity relationship,” Journal of Chemical and Engineering Data, vol. 52, no. 4, pp. 1429–1436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Rai and E. J. Maginn, “Critical behaviour and vapour-liquid coexistence of 1-alkyl-3- methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations,” Faraday Discussions, vol. 154, pp. 53–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Moeini, “New regularity for internal pressure of dense fluids,” Journal of Physical Chemistry B, vol. 110, no. 7, pp. 3271–3275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Moeini and M. Deilam, “Determination of molecular diameter by PVT,” ISRN Physical Chemistry, vol. 2012, Article ID 521827, 5 pages, 2012. View at Publisher · View at Google Scholar
  9. R. B. Stewart and T. Jacobsen, “Thermodynamic properties of Ar from the triple point to 1200 K with pressure to 1000 MPa,” Journal of Physical and Chemical Reference Data, vol. 18, no. 2, pp. 639–798, 1989. View at Publisher · View at Google Scholar
  10. R. D. Goodwin, “Carbon monoxide thermophysical properties from 68 to 1000 K at pressures to 100 MPa,” Journal of Physical and Chemical Reference Data, vol. 14, no. 4, pp. 849–933, 1985. View at Publisher · View at Google Scholar
  11. R. Span and W. Wagner, “A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa,” Journal of Physical and Chemical Reference Data, vol. 25, no. 6, pp. 1509–1596, 1996. View at Scopus
  12. R. T. Jacobsen, R. B. Stewart M, and Jahangiri, “Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa,” Journal of Physical and Chemical Reference Data, vol. 15, no. 2, pp. 735–910, 1986. View at Publisher · View at Google Scholar
  13. B. A. Younglove and J. F. Ely, “Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane,” Journal of Physical and Chemical Reference Data, vol. 16, no. 4, pp. 577–799, 1987.
  14. R. D. Goodwin, “Benzene thermophysical properties from 279 to 900 K at pressures to 1000 Bar,” Journal of Physical and Chemical Reference Data, vol. 17, no. 4, pp. 1541–1637, 1988. View at Publisher · View at Google Scholar
  15. R. D. Goodwin, “Toluene thermophysical properties from 178 to 800 K at pressures to 1000 Bar,” Journal of Physical and Chemical Reference Data, vol. 18, no. 4, pp. 1565–1637, 1989. View at Publisher · View at Google Scholar
  16. V. Moeini, F. Ashrafi, M. Karri, and H. Rahimi, “Calculation of thermal pressure coefficient of dense fluids using the linear isotherm regularity,” Journal of Physics Condensed Matter, vol. 20, no. 7, Article ID 075102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Moeini, “Internal pressures of lithium and cesium fluids at different emperatures,” Journal of Chemical and Engineering Data, vol. 55, no. 3, pp. 1093–1099, 2010. View at Publisher · View at Google Scholar
  18. K. Mutsuda, K. Tamura, and M. Inui, “Instability of the electron gas in an expanding metal,” Physical Review Letters, vol. 98, no. 9, Article ID 096401, 4 pages, 2007. View at Publisher · View at Google Scholar
  19. K. Matsuda, S. Naruse, K. Hayashi, K. Tamura, M. Inui, and Y. Kajihara, “Structural study of expanded fluid cesium,” Journal of Physics: Conference Series, vol. 98, no. 1, Article ID 012003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Tamura, K. Matsuda, and M. Inui, “Structural and electronic properties of expanding fluid metals,” Journal of Physics Condensed Matter, vol. 20, no. 11, Article ID 114102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Moeini, “Internal pressures of sodium, potassium, and rubidium fluids at different temperatures,” Journal of Chemical and Engineering Data, vol. 55, no. 12, pp. 5673–5680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. A. Few and M. Rigby, “Thermal pressure coefficient and internal pressure of 2,2-dimethylpropane,” Journal of Physical Chemistry, vol. 79, no. 15, pp. 1543–1546, 1975. View at Scopus
  23. G. R. Driver and A. G. Williamson, “Thermal pressure coefficients of di-n-alkyl ethers,” Journal of Chemical and Engineering Data, vol. 17, no. 1, pp. 65–66, 1972. View at Scopus
  24. G. C. Fortune and G. N. Malcolm, “The thermal pressure coefficient and the entropy of melting at constant volume of isotactic polypropylene,” Journal of Physical Chemistry, vol. 71, no. 4, pp. 876–879, 1967. View at Scopus
  25. G. Parsafar and E. A. Mason, “Linear isotherms for dense fluids: a new regularity,” Journal of Physical Chemistry, vol. 97, no. 35, pp. 9048–9053, 1993. View at Scopus
  26. G. A. Parsafar, V. Moeini, and B. Najafi, “Pressure dependence of liquid vapor pressure: an improved Gibbs prediction,” Iranian Journal of Chemistry and Chemical Engineering, vol. 20, no. 1, pp. 37–43, 2001. View at Scopus
  27. P. V. R. Schleyer, “Lithium,” Chemical and Engineering News, vol. 81, no. 36, p. 36, 2003. View at Scopus
  28. M. Jacoby, “Lithium batteries with more muscle,” Chemical and Engineering News, vol. 84, no. 24, pp. 36–38, 2006. View at Scopus
  29. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, New York, NY, USA, 2nd edition, 1964.
  30. Y. Ghayeb, B. Najafi, V. Moeini, and G. Parsafar, “Calculation of the viscosity of supercritical fluids based on the modified Enskog theory,” High Temperatures—High Pressures, vol. 35-36, no. 2, pp. 217–226, 2003/2004. View at Publisher · View at Google Scholar · View at Scopus