About this Journal Submit a Manuscript Table of Contents
ISRN Biophysics
Volume 2012 (2012), Article ID 725350, 6 pages
http://dx.doi.org/10.5402/2012/725350
Research Article

Fragmentation of Plasmid DNA Produced by Gamma Radiation: A Theoretical Approach

1Physics Institute, Rua do Matão, Travessa R, No. 187, University of São Paulo, 05508-090 São Paulo, SP, Brazil
2FESP, São Paulo Engineering School, São Paulo, SP, Brazil
3Laboratory of Devices Research, University of Campinas, Campinas, SP, Brazil

Received 16 August 2011; Accepted 18 September 2011

Academic Editor: E. Dague

Copyright © 2012 R. A. S. Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Strogatz, “Quoted by S. Nadis in “News feature: all together now”,” Nature, vol. 421, pp. 780–782, 2003.
  2. C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” Journal of Statistical Physics, vol. 52, no. 1-2, pp. 479–487, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. C. Tsallis, S. V. F. Levy, A. M. C. Souza, and R. Maynard, “Statistical-mechanical foundation of the ubiquity of lévy distributions in nature,” Physical Review Letters, vol. 75, no. 20, pp. 3589–3593, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  4. P. Bernaola-Galván, R. Román-Roldán, and J. L. Oliver, “Compositional segmentation and long-range fractal correlations in DNA sequences,” Physical Review E, vol. 53, no. 5, pp. 5181–5189, 1996. View at Scopus
  5. U. Amaldi and G. Kraft, “Radiotherapy with beams of carbon ions,” Reports on Progress in Physics, vol. 68, no. 8, pp. 1861–1882, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. L. Alpen, Radiation Biophysics, Academic Press, San Diego, Calif, USA, 1998.
  7. Z. G. Yu and X. Song, “Variable range hopping and electrical conductivity along the DNA double helix,” Physical Review Letters, vol. 86, no. 26 I, pp. 6018–6021, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Chatterjee, “Radiobiological effects of high-let particles: DNA strand breaks,” Nuclear Instruments and Methods in Physics Research A, vol. 280, no. 2-3, pp. 439–448, 1989.
  9. M. Krämer and G. Kraft, “Track structure and DNA damage,” Advances in Space Research, vol. 14, no. 10, pp. 151–159, 1994. View at Scopus
  10. D. T. Goodhead, “The initial physical damage produced by ionizing radiations,” International Journal of Radiation Biology, vol. 56, no. 5, pp. 623–634, 1989. View at Scopus
  11. H. Nikjoo, P. O'Neill, M. Terrissol, and D. T. Goodhead, “Quantitative modelling of DNA damage using Monte Carlo track structure method,” Radiation and Environmental Biophysics, vol. 38, no. 1, pp. 31–38, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. H. G. Hansma and J. H. Hoh, “Biomolecular imaging with the atomic force microscope,” Annual Review of Biophysics and Biomolecular Structure, vol. 23, pp. 115–139, 1994.
  13. D. Pang, et al., “Atomic force microscopy imaging of DNA and DNA repair proteins: applications in radiobiological research,” Radiation Oncology Investigations, vol. 5, pp. 163–169, 1997.
  14. S. Boichot, M. Fromm, S. Cunniffe et al., “Investigation of radiation damage in DNA by using atomic force microscopy,” Radiation Protection Dosimetry, vol. 99, no. 1–4, pp. 143–145, 2002. View at Scopus
  15. D. Pang, B. L. Berman, S. Chasovskikh, J. E. Rodgers, and A. Dritschilo, “Investigation of neutron-induced damage in DNA by atomic force microscopy: experimental evidence of clustered DNA lesions,” Radiation Research, vol. 150, no. 6, pp. 612–618, 1998. View at Scopus
  16. D. Pang, J. E. Rodgers, B. L. Berman, S. Chasovskikh, and A. Dritschilo, “Spatial distribution of radiation-induced double-strand breaks in plasmid DNA as resolved by atomic force microscopy,” Radiation Research, vol. 164, no. 6, pp. 755–765, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Psonka, S. Brons, M. Heiss, E. Gudowska-Nowak, and G. Taucher-Scholz, “Induction of DNA damage by heavy ions measured by atomic force microscopy,” Journal of Physics Condensed Matter, vol. 17, no. 18, pp. S1443–S1446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Gerard and A. R. Bishop, “Statistical mechanics of a nonlinear model for DNA denaturation,” Physical Review Letters, vol. 62, no. 23, pp. 2755–2758, 1989. View at Publisher · View at Google Scholar · View at Scopus
  19. T. C. Lim, “The relationship between Lennard-Jones (12-6) and Morse potencial function,” Journal of Mathematical Chemistry, vol. 33, p. 1, 2003.
  20. J. A. Greathouse, J. S. Durkin, J. P. Larentzos, and R. T. Cygan, “Implementation of a Morse potential to model hydroxyl behavior in phyllosilicates,” Journal of Chemical Physics, vol. 130, no. 13, Article ID 134713, 2009. View at Publisher · View at Google Scholar · View at PubMed
  21. D. Pang, et al., “Investigation of neutron-induced damage in DNA by atomic force microscopy: experimental evidence of clustered DNA lesions,” Journal of The Radiation Research Society, vol. 150, no. 6, pp. 612–618, 1998.
  22. Y. Gao, K. V. Devi-Prasad, and E. W. Prohofsky, “A self-consistent microscopic theory of hydrogen bond melting with application to poly (dG)·poly(dC),” The Journal of Chemical Physics, vol. 80, no. 12, pp. 6291–6298, 1983.
  23. S. Zdravkovic and M. V. Sataric, “Single-molecule unzippering experiments on DNA and Peyrard-Bishop-Dauxois model,” Physical Review E, vol. 73, Article ID 021905, pp. 1–11, 2006.
  24. E. L. Alpen, Radiation Biophysics, Prentice Hall, NJ, USA, 1990.
  25. J. E. Brady and G. E. Humiston, Química Geral. 2, LTC, Rio de Janeiro, Brazil, 1986.
  26. D. J. Scalapino, M. Sears, and R. A. Ferrell, “Statistical mechanics of one-dimensional ginzburg-landau fields,” Physical Review B, vol. 6, no. 9, pp. 3409–3416, 1972. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Peyrard, “Nonlinear dynamics and statistical physics of DNA,” Nonlinearity, vol. 17, no. 2, pp. R1–R40, 2004. View at Scopus
  28. R. A. S. Silva, E. D. Filho, and J. R. Ruggiero, “A model coupling vibrational and rotational motion for the DNA molecule,” Journal of Biological Physics, vol. 34, no. 5, pp. 511–519, 2008. View at Publisher · View at Google Scholar · View at PubMed