About this Journal Submit a Manuscript Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 734325, 5 pages
http://dx.doi.org/10.5402/2012/734325
Research Article

Preparation, Characterization, and H2S Sensing Performance of Sprayed Nanostructured SnO2 Thin Films

1Nanomaterials Research Laboratory, Department of Physics, G. D. M. Arts, K. R. N. Commerce and M. D. Science College, Jamner 424 206, India
2Department of Physics, Arts, Commerce and Science College, Bodwad 425 310, India
3Materials Research Laboratory, Arts, Commerce and Science College, Nandgaon 423 106, India
4Nanomaterials Research Laboratory, Department of Physics, Pratap College, Amalner 425 401, India
5Nanoscience Division, Centre for Materials for Electronics Technology (C-MET), Pune 411 008, India

Received 3 April 2012; Accepted 9 May 2012

Academic Editors: S. A. Ansari, P. Perriat, and D. K. Sarker

Copyright © 2012 R. H. Bari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nanostructured SnO2 thin films were prepared by spraying tin chloride dihydrate onto the heated glass substrate at 250°C. The films were fired at 500°C. As-prepared thin films were studied using XRD and FESEM to know crystal structure and surface morphology. The average crystallite and grain size observed from XRD and FF-SEM was found to be less than 33 and 67 nm, respectively. The films sprayed for 30 min were observed to be most sensitive to H2S at 250°C. The results are discussed and interpreted.

1. Introduction

The n-type semiconductor material has been widely used in the gas detecting field during the last decades. The sensing properties of various semiconductor oxides, especially the SnO2-based material, have been extensively studied [1]. Gas sensing applications demand materials that have a quick response-recovery time and high response for trace level detection of various gases. Semiconducting tin oxide is found useful for various gas sensing applications and improves its sensitivity and selectivity with appropriate catalysts [2]. Several potential applications have been reported previously, such as a transparent conductive electrode for solar cells [3], a gas sensing material for gas sensors devices [4], photochemical and photoconductive device, liquid crystal display [5], gas discharge display, and lithium-ion batteries. There has been intensive research on improving the gas response and selectivity by controlling the particle size [6], nanostructures [7], sensing temperature [8], surface structure [9], and catalysts [10].

A variety of techniques have been used to prepare tin oxide (SnO2) thin films. These include spray pyrolysis [11], ultrasonic spray pyrolysis [12], chemical vapour deposition [13], activated reactive evaporation [14], ion-beam-assisted deposition [15], sputtering [16], and sol-gel [17] methods. Among these techniques, spray pyrolysis has proved to be simple, reproducible, and inexpensive, as well as suitable for large area applications. Besides the simple experimental arrangement, high growth rate and mass production capability for large area coatings make it useful for industrial as well as solar cell applications. In addition, spray pyrolysis opens up the possibility to control the film morphology and particle size in the nanometer range. As demonstrated [18] spray pyrolysis is a versatile technique for deposition of metal oxides.

Hydrogen sulfide is a toxic gas, often produced in coal, coal oil, or natural gas manufacturing. Even at low concentration it produces severe effects on the nervous system. Therefore, reliable sensors with low cost, low energy consumption having high sensitivity, selectivity, and operability in ppm range of H2S are in high demand for environmental safety and industrial control purposes. In general, SnO2 response towards H2S is reported at the higher temperatures; however, there are few references where a response at room temperature is also reported [19, 20].

We have tried to improve the H2S gas response by making nanostructured SnO2 thin film sensor and found that nanostructured SnO2 thin film gas sensor gives maximum response to H2S gas. In the present investigations, nanocrystalline SnO2 thin films with different spraying time of the solution were prepared by spray pyrolysis technique. Structural properties and grain sizes were studied using X-ray diffraction. Microstructure was studied using FESEM. These nanostructured SnO2 thin films were tested for sensing different gases and were observed to be most sensitive to H2S at 250°C.

2. Experimental

2.1. Preparation of Nanostructured SnO2 Thin Films

Figure 1 shows spray pyrolysis technique for preparation of nanostructured SnO2 thin films. Set-up consists of spraying chamber, spray nozzle (gun), compressor for carrier gas, heating system, and temperature indicator.

734325.fig.001
Figure 1: Schematic diagram of spray pyrolysis system for the preparation of nanostructured SnO2 thin films.

Nanostructured SnO2 thin films were prepared from aqueous solution of tin (II)chloride dehydrate (SnCl22H2O), Purified Merck) dissolved in deionized water to a concentration of 0.05 M for the preparation of thin films. The spray produced by nozzle was sprayed onto the ultrasonically cleaned glass substrates heated at 250±5°C. Various parameters such as nozzle-to-substrate distance, deposition time and flow rate of solution, deposition temperature, and concentration were optimized to get good-quality films. Thus the films with different spraying time of 10 min, 20 min, 30 min and 40 min were obtained and were referred to as sample S1, S2, S3, and S4, respectively. The as-prepared samples were annealed in air at 500°C for 1 h.

2.2. Characterization

In the present study nanostructured SnO2 thin films were characterized by X-ray diffraction (Miniflex Model, Rigaku, Japan). The microstructure of the films was analyzed using a field emission scanning electron microscope (FESEM, JEOLJED 6300). Gas sensing properties were measured using a static gas sensing system. The sensor performance on exposure of LPG, carbon dioxide, hydrogen, ammonia, ethanol, chlorine, and H2S was examined.

3. Results

3.1. X-Ray Diffraction Analysis

Figure 2 shows the X-ray diffractogram of nanocrystalline SnO2 thin film. The observed peaks are matching well with the standard JCPDS data of SnO2 [21]. The broad peaks may be due to the nanocrystalline nature of SnO2. The average grain size is calculated from Scherer’s formula, 𝐷=0.9𝜆/𝛽cos𝜃, where 𝐷 is average crystallite size, 𝜆 is X-ray wavelength (1.5418 Å), 𝛽 is FWHM of the peak, and 𝜃 is diffraction peak position. It was found to be 33 nm.

734325.fig.002
Figure 2: X-ray diffractogram of pure SnO2 thin film (30 min).
3.2. Surface Morphology

The microstructure of the prepared film was analyzed using a field emission scanning electron microscope (FE-SEM, JEOL.JED 6300).

Figure 3 shows the FESEM images, showing surface topography of most sensitive thin film samples. The morphology of the grains was roughly spherical in shape. The observed grain size was 67 nm.

734325.fig.003
Figure 3: FESEM images of most sensitive thin films.
3.3. Gas Sensing Performance of the Sensors
3.3.1. Gas Response with Operating Temperature

Gas response is defined as the change in conductance of the sample on exposure to gas to the original conductance. It is given by the relation 𝐺𝑆=𝑔𝐺𝑎𝐺𝑎,(1) where 𝐺𝑎 is the conductance of sensor in air and 𝐺𝑔 is the conductance of sensor in presence of gas.

Figure 4 shows the variation in response with the operating temperature to 600 ppm of H2S for S1, S2, S3, and S4 samples. For all the samples the H2S gas response increases with increase in operating temperature, reaches maximum (𝑆=3499 for sample S3) at 250°C, and falls with further increase in operating temperature.

734325.fig.004
Figure 4: Gas response of pure nanostructured SnO2 thin films with operating temperature.

Response of sensors depends on two factors, namely, the speed of chemical reaction on the surface of the grains, and the speed of the diffusion of gas molecules to that surface. These are activation processes, and the activation energy of chemical reactions is higher. At low temperatures the sensor response is restricted by the speed of chemical reactions. At higher temperature the sensor response is restricted by the speed of the diffusion of gas molecules to that surface. At some intermediate temperature the speed values of two processes become equal, and at that point the sensor response reaches its maximum. According to this mechanism for every gas there is a specific temperature at which the sensor response attains its peak value.

Thus, in the present case the optimum operating temperature for nanostructured SnO2 films was 250°C. The temperature, which corresponds to a certain peak value, is a function of the kind of target gases and the chemical composition of the oxide, including additives and catalysts, and pure oxides are generally stable at lower temperatures.

3.3.2. Gas Response to H2S at Various Gas Concentrations

Figure 5 shows the gas response against H2S concentration at 250°C. It is observed that the response increases linearly as the H2S concentration increases from 100 to 600 ppm and then remains nearly constant with further increase in the H2S concentration. The linear relationship between the response and the H2S concentration at low concentrations may be attributed to the availability of sufficient number of sensing sites on the film to act upon the H2S. The low gas concentration implies a lower surface coverage of gas molecules, resulting into lower surface reaction between the surface adsorbed oxygen species and the gas molecules. The increase in the gas concentration increases the surface reaction due to a large surface coverage. Further increase in the surface reaction will be gradual when saturation of the surface coverage of gas molecules is reached. Thus, the maximum sensitivity was obtained at an operating temperature of 250°C for the exposure of 600 ppm of H2S.

734325.fig.005
Figure 5: Variation of response with gas concentration.
3.3.3. Response and Recovery of the Sensor

The time taken for the sensor to attain 90% of the maximum decrease in resistance on exposure to the target gas is the response time. The time taken for the sensor to get back 90% of original resistance is the recovery time. The response and recovery of the nanostructured SnO2 thin film (S3) sensor on exposure of 600 ppm of H2S at 250°C are represented in Figure 6. The response is quick (4 s) and recovery is fast (9 s). The high oxidizing ability of adsorbed oxygen species on the surface nanoparticles and high volatility of desorbed by-products explain the quick response to H2S and fast recovery.

734325.fig.006
Figure 6: Response and recovery of the sensor.
3.3.4. Comparison of H2S Sensing Performance of Reported SnO2 Sensor with sensors Prepared in the Present Work

(See Table 1).

tab1
Table 1

4. Discussion

The gas response of any metal oxide semiconductor to a particular gas increases with the decrease in the size of nanocrystallites [28, 29] due to an increase in surface-to-volume ratio and therefore the reactivity. Grain sizes and microstructures of the sensor affect the gas sensing performance of the sensor. It was found that, if the grain size of the sensor material is sufficiently small, the area of active surface sites is larger, and the sensitivity and selectivity for a particular gas enhance largely. Nanostructured materials would be expected to show much better gas sensing performance as compared with the sensor fabricated from bulk materials [30, 31].

The resistance of the nanostructured SnO2 thin films decreases as gas flows into the test chamber and is adsorbed on the surface of the nanostructured SnO2. However, when nanostructured SnO2 thin films consist of nanograins in absence of H2S, the depletion layer would extend throughout the entire layer of nanostructured SnO2 on the film and its resistance would become strikingly large. In a H2S gas environment the depleted layer would shrink quickly as it obtains conduction electrons due to reaction between H2S adsorbed oxygen, and the resistance of the nanostructured SnO2 would experience a large change. The response to H2S can be explained in the following reaction: H2S+3O(ads)H2O(g)+SO2(g)+3e(2)

5. Conclusion

Nanostructured SnO2 thin films could be prepared by simple and inexpensive spray pyrolysis technique. The structural and microstructural properties confirm that the as-prepared SnO2 thin films are nanostructured in nature. The SnO2 thin film of sample (S3=30 min spray time) was most sensitive to H2S gas and exhibited the response of S=3499 to the gas concentration of 600 ppm at the temperature of 250°C. The sensor has good selectivity to H2S against different gases. The nanostructured SnO2 thin films exhibit rapid response–recovery, which is one of the main features of this sensor.

Acknowledgments

The authors are thankful to the University Grants Commission, New Delhi for providing financial support. Thanks are due to Principal, G. D. M. Arts, K. R. N. Commerce, and M. D. Science College, Jamner, for providing laboratory facilities for this work.

References

  1. J. Liu, X. Huang, G. Ye et al., “H2S detection sensing characteristic of CuO/SnO2 sensor,” Sensors, vol. 3, no. 5, pp. 110–118, 2003. View at Scopus
  2. V. Gupta, S. Mozumdar, A. Chowdhuri, and K. Sreenivas, “Influence of CuO catalyst in the nanoscale range on SnO2 surface for H2S gas sensing applications,” Pramana, vol. 65, no. 4, pp. 647–652, 2005. View at Scopus
  3. S. Chappel and A. Zaban, “Nanoporous SnO2 electrodes for dye-sensitized solar cells: Improved cell performance by the synthesis of 18 nm SnO2 colloids,” Solar Energy Materials and Solar Cells, vol. 71, no. 2, pp. 141–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. G. E. Patil, D. D. Kajale, D. N. Chavan et al., “Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis,” Bulletin of Materials Science, vol. 34, no. 1, pp. 1–9, 2011. View at Scopus
  5. S. Gnanam and V. Rajendran, “Luminescence properties of eg-assisted SnO2 nanoparticles by sol-gel process,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 3, pp. 699–704, 2010. View at Scopus
  6. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-based elements,” Sensors and Actuators B, vol. 3, no. 2, pp. 147–155, 1991. View at Scopus
  7. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts,” Applied Physics Letters, vol. 81, no. 10, pp. 1869–1871, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Wang, X. Jiang, and Y. Xia, “A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient concentrations,” Journal of the American Chemical Society, vol. 125, no. 52, pp. 16176–16177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Shimizu, E. Di Bartolomeo, E. Traversa et al., “Effect of surface modification on NO2 sensing properties of SnO2 varistor-type sensors,” Sensors and Actuators B, vol. 60, no. 2, pp. 118–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, “Sensing behavior of CuO loaded SnO2 element for H2S detection,” Chemistry Letters, vol. 25, no. 4, pp. 575–578, 1991.
  11. K. Murakami, K. Nakajima, and S. Kaneko, “Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique,” Thin Solid Films, vol. 515, no. 24, pp. 8632–8636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Patil, M. D. Shinde, A. R. Bari, and V. V. Deo, “Highly sensitive and quickly responding ultrasonically sprayed nanostructured SnO2 thin films for hydrogen gas sensing,” Sensors and Actuators B, vol. 143, no. 1, pp. 270–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Okuno, T. Oshima, S. D. Lee, and S. Fujita, “Growth of SnO2 crystalline thin films by mist chemical vapour deposition method,” Physica Status Solidi C, vol. 8, no. 2, pp. 540–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. S. Randhawa, M. D. Matthews, and R. F. Bunshah, “SnO2 films prepared by activated reactive evaporation,” Thin Solid Films, vol. 83, no. 2, pp. 267–271, 1981. View at Scopus
  15. T. Mohanty, Y. Batra, A. Tripathi, and D. Kanjilal, “Nanocrystalline SnO2 formation using energetic ion beam,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 6, pp. 2036–2040, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Gui, L. Hao, J. Wang, L. Yuan, W. Jia, and X. Dong, “Structure and features of SnO2 thin films prepared by RF reactive sputtering,” Chinese Optics Letters, vol. 8, supplement 1, p. 134, 2010. View at Publisher · View at Google Scholar
  17. G. Neri, A. Bonavita, G. Rizzo et al., “Towards enhanced performances in gas sensing: SnO2 base nanocrystalline oxides application,” Sensors and Actuators B, vol. 122, pp. 564–571, 2007.
  18. P. S. Patil, “Gas-chromism in ultrasonic spray pyrolyzed tungsten oxide thin films,” Bulletin of Materials Science, vol. 23, no. 4, pp. 309–312, 2000. View at Scopus
  19. Z. Zeng, K. Wang, Z. Zhang, J. Chen, and W. Zhou, “The detection of H2S at room temperature by using individual indium oxide nanowire transistors,” Nanotechnology, vol. 20, no. 4, pp. 44–51, 2009.
  20. R. S. Niranjan, V. A. Chaudhary, I. S. Mulla, and K. Vijayamohanan, “A novel hydrogen sulfide room temperature sensor based on copper nanocluster functionalized tin oxide thin films,” Sensors and Actuators B, vol. 85, no. 1-2, pp. 26–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. ASTM, card no.05-0467.
  22. G. E. Patil, D. D. Kajale, S. D. Shinde, et al., “Effect of thermal annealing temperature on gas sensing performance of SnO2 thin films prepared by spray pyrolysis,” Sensor and Transducers, vol. 12, pp. 96–108, 2010.
  23. Ü. Kersen and L. Holappa, “H2S-sensing properties of SnO2 produced by ball milling and different chemical reactions,” Analytica Chimica Acta, vol. 562, no. 1, pp. 110–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Rumyantseva, M. Labeau, G. Delabouglise, L. Ryabova, I. Kutsenok, and A. Gaskov, “Copper and nickel doping effect on interaction of SnO2 films with H2S,” Journal of Materials Chemistry, vol. 7, no. 9, pp. 1785–1790, 1997. View at Scopus
  25. G. Fang, Z. Liu, C. Liu, and K. L. Yao, “Room temperature H2S sensing properties and mechanism of CeO2-SnO2 sol-gel thin films,” Sensors and Actuators B, vol. 66, no. 1, pp. 46–48, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Liu, S. Gong, J. Xia, L. Quan, H. Liu, and D. Zhou, “The sensor response of tin oxide thin films to different gas concentration and the modification of the gas diffusion theory,” Sensors and Actuators B, vol. 138, no. 1, pp. 289–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. I. S. Hwang, J. K. Choi, S. J. Kim et al., “Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO,” Sensors and Actuators B, vol. 142, no. 1, pp. 105–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. D. Sartale and C. D. Lokhande, “Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method,” Materials Chemistry and Physics, vol. 72, no. 1, pp. 101–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. L. A. Patil, A. R. Bari, M. D. Shinde, V. Deo, and M. P. Kaushik, “Detection of dimethyl methyl phosphonate—a simulant of sarin: the highly toxic chemical warfare—using platinum activated nanocrystalline ZnO thick films,” Sensors and Actuators B, vol. 161, no. 1, pp. 372–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. L. A. Patil, A. R. Bari, M. D. Shinde, and V. Deo, “Ultrasonically prepared nanocrystalline ZnO thin films for highly sensitive LPG sensing,” Sensors and Actuators B, vol. 149, no. 1, pp. 79–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. A. Patil, A. R. Bari, M. D. Shinde, and V. Deo, “Ultrasonically synthesized nanocrystalline ZnO powder-based thick film sensor for ammonia sensing,” Sensor Review, vol. 30, no. 4, pp. 290–296, 2010. View at Publisher · View at Google Scholar · View at Scopus