About this Journal Submit a Manuscript Table of Contents
ISRN Ceramics
Volume 2012 (2012), Article ID 741042, 9 pages
http://dx.doi.org/10.5402/2012/741042
Research Article

Contact Deformation of Alumina

Central Glass and Ceramic Research Institute, CSIR, 196 Raja S.C. Mullick Road, Kolkata 700032, India

Received 28 September 2012; Accepted 15 October 2012

Academic Editors: K. L. Bing, H. I. Hsiang, C.-F. Yang, and K. Zupan

Copyright © 2012 Manjima Bhattacharya and Anoop Kumar Mukhopadhyay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Z. A. Azhar, L. C. Choong, H. Mohamad, M. M. Ratnam, and Z. A. Ahmad, “Effects of Cr2O3 addition on the mechanical properties, microstructure and wear performance of zirconia-toughened-alumina (ZTA) cutting inserts,” Journal of Alloys and Compounds, vol. 513, no. 5, pp. 91–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Affatato, P. Taddei, S. Carmignato, E. Modena, and A. Toni, “Severe damage of alumina-on-alumina hip implants: wear assessments at a microscopic level,” Journal of the European Ceramic Society, vol. 32, no. 14, pp. 3647–3657, 2012. View at Publisher · View at Google Scholar
  3. S. T. Aruna, N. Balaji, J. Shedthi, and V. K. William Grips, “Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings,” Surface & Coatings Technology, vol. 208, pp. 92–100, 2012. View at Publisher · View at Google Scholar
  4. C. T. Wang, C. W. Lin, C. L. Hsia, B. W. Chang, and M. F. Luo, “Under-surface observation of thin-film alumina on NiAl(100) with scanning tunneling microscopy,” Thin Solid Films, vol. 520, no. 11, pp. 3952–3959, 2012.
  5. C. W. Ong, C. W. Boey, R. S. Hixson, and J. O. Sinibaldi, “Advanced layered personnel armor,” International Journal of Impact Engineering, vol. 38, no. 5, pp. 369–383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Olofsson, U. Bexell, and S. Jacobson, “Tribofilm formation of lightly loaded self mated alumina contacts,” Wear, vol. 289, pp. 39–45, 2012. View at Publisher · View at Google Scholar
  7. F. Inam, T. Peijs, and M. J. Reece, “The production of advanced fine-grained alumina by carbon nanotube addition,” Journal of the European Ceramic Society, vol. 31, no. 15, pp. 2853–2859, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. N. Rascon, A. A. Elguezabal, E. Orrantia, and M. H. B. Bernal, “Compressive strength, hardness and fracture toughness of Al2O3 whiskers reinforced ZTA and ATZ nanocomposites: weibull analysis,” International Journal of Refractory Metals and Hard Materials, vol. 29, no. 3, pp. 333–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. C. Urkovic, I. Kumic, and K. Grilec, “Solid particle erosion behaviour of high purity alumina ceramics,” Ceramics International, vol. 37, no. 1, pp. 29–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” Journal of the American Ceramic Society, vol. 64, no. 9, pp. 533–538, 1981.
  11. A. Krell and P. Blank, “Grain size dependence of hardness in dense submicrometer alumina,” Journal of the American Ceramic Society, vol. 78, no. 4, pp. 1118–1120, 1995. View at Scopus
  12. A. Franco, S. G. Roberts, and P. D. Warren, “Fracture toughness, surface flaw sizes and flaw densities in Al2O3,” Acta Materialia, vol. 45, no. 3, pp. 1009–1015, 1997. View at Scopus
  13. A. Krell and S. Schädlich, “Nanoindentation hardness of submicrometer alumina ceramics,” Materials Science and Engineering A, vol. 307, no. 1-2, pp. 172–181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Krell, P. Blank, H. Ma, T. Hutzler, and M. Nebelung, “Processing of high-density submicrometer Al2O3 for new applications,” Journal of the American Ceramic Society, vol. 86, no. 4, pp. 546–553, 2003. View at Scopus
  15. N. Dwivedi and S. Kumar, “Nanoindentation testing on copper/diamond-like carbon bi-layer films,” Current Applied Physics, vol. 12, no. 1, pp. 247–253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Drechsler, A. Karbach, and H. Fuchs, “Nanoindentation on polycarbonate/polymethyl methacrylate blends,” Applied Physics A, vol. 66, supplement 1, pp. S825–S829, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Longtin, C. Fauteux, E. Coronel, U. Wiklund, J. Pegna, and M. Boman, “Nanoindentation of carbon microfibers deposited by laser-assisted chemical vapor deposition,” Applied Physics A, vol. 79, no. 3, pp. 573–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Gindl, H. S. Gupta, T. Schöberl, H. C. Lichtenegger, and P. Fratzl, “Mechanical properties of spruce wood cell walls by nanoindentation,” Applied Physics A, vol. 79, no. 8, pp. 2069–2073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. W. Choi, D. H. Seo, and J. I. Jang, “A nanoindentation study on the micromechanical characteristics of API X100 pipeline steel,” Metals and Materials International, vol. 15, no. 3, pp. 373–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Boudoukha, F. Halitim, S. Paletto, and G. Fantozzi, “Mechanical properties of titanium implanted polycrystalline alumina and sapphire determined by nanoindentation,” Ceramics International, vol. 24, no. 3, pp. 189–198, 1998. View at Scopus
  21. R. Chakraborty, A. Dey, and A. K. Mukhopadhyay, “Loading rate effect on nanohardness of soda-lime-silica glass,” Metallurgical and Materials Transactions A, vol. 41, no. 5, pp. 1301–1312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Dey, R. Chakraborty, and A. K. Mukhopadhyay, “Nanoindentation of soda lime-silica glass: effect of loading rate,” International Journal of Applied Glass Science, vol. 2, no. 2, pp. 144–155, 2011. View at Publisher · View at Google Scholar
  23. A. Dey, R. Chakraborty, and A. K. Mukhopadhyay, “Enhancement in nanohardness of soda-lime-silica glass,” Journal of Non-Crystalline Solids, vol. 357, no. 15, pp. 2934–2940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Chakraborty, A. Dey, and A. K. Mukhopadhyay, “Role of the energy of plastic deformation and the effect of loading rate on nanohardness of soda-lime-silica glass,” Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, vol. 51, no. 6, pp. 293–303, 2010. View at Scopus
  25. M. Bhattacharya, R. Chakraborty, A. Dey, A. K. Mukhopadhyay, and S. K. Biswas, “Effect of loading rate on nano-mechanical properties of alumina,” in Proceedings of the Workshop on Mechanical Behaviour of Systems at Small Length Scales-3, p. 40, Trivandrum, India, September 2011.
  26. S. Bhuniya, R. Chakraborty, A. Dey et al., “Effect of loading rate on microhardness of alumina ceramics,” in Proceedings of the High Pressure Science and Technology (AIRAPT 23), p. 188, BARC, Mumbai, India, September 2011.
  27. C. A. Schuh, T. G. Nieh, and Y. Kawamura, “Rate dependence of serrated flow during nanoindentation of a bulk metallic glass,” Journal of Materials Research, vol. 17, no. 7, pp. 1651–1654, 2002. View at Scopus
  28. Y. I. Golovin, V. I. Ivolgin, V. A. Khonik, K. Kitagawa, and A. I. Tyurin, “Serrated plastic flow during nanoindentation of a bulk metallic glass,” Scripta Materialia, vol. 45, no. 8, pp. 947–952, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. C. A. Schuh and T. G. Nieh, “A nanoindentation study of serrated flow in bulk metallic glasses,” Acta Materialia, vol. 51, no. 1, pp. 87–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Nowak, T. Sekino, and K. Niihara, “Surface deformation of sapphire crystal,” Philosophical Magazine A, vol. 74, no. 1, pp. 171–194, 1996. View at Scopus
  31. J. E. Bradby, S. O. Kucheyev, J. S. Williams et al., “Indentation-induced damage in GaN epilayers,” Applied Physics Letters, vol. 80, no. 3, pp. 383–385, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, and M. V. Swain, “Mechanical deformation of single-crystal ZnO,” Applied Physics Letters, vol. 80, no. 6, pp. 956–958, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. C. E. Packard and C. A. Schuh, “Initiation of shear bands near a stress concentration in metallic glass,” Acta Materialia, vol. 55, no. 16, pp. 5348–5358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Shang, T. Rouxel, M. Buckley, and C. Bernard, “Viscoelastic behavior of a soda-lime-silica glass in the 293–833 K range by micro-indentation,” Journal of Materials Research, vol. 21, no. 3, pp. 632–638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. W. G. Mao, Y. G. Shen, and C. Lu, “Deformation behavior and mechanical properties of polycrystalline and single crystal alumina during nanoindentation,” Scripta Materialia, vol. 65, no. 2, pp. 127–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. W. G. Mao, Y. G. Shen, and C. Lu, “Nanoscale elastic-plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation,” Journal of the European Ceramic Society, vol. 31, no. 10, pp. 1865–1871, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology,” Journal of Materials Research, vol. 19, no. 1, pp. 3–20, 2004. View at Scopus
  38. A. G. Evans and T. R. Wilshaw, “Dynamic solid particle damage in brittle materials: an appraisal,” Journal of Materials Science, vol. 12, no. 1, pp. 97–116, 1977. View at Publisher · View at Google Scholar · View at Scopus
  39. M. M. Chaudhri, J. K. Wells, and A. Stephens, “Dynamic hardness, deformation and fracture of simple ionic crystals at very high rates of strain,” Philosophical Magazine A, vol. 43, no. 3, pp. 643–664, 1981. View at Scopus
  40. D. B. Marshall, A. G. Evans, and Z. Nisenholz, “Measurement of dynamic hardness by controlled sharp-projectile impact,” Journal of the American Ceramic Society, vol. 66, no. 8, pp. 580–585, 1983. View at Scopus
  41. R. J. Anton and G. Subhash, “Dynamic Vickers indentation of brittle materials,” Wear, vol. 239, no. 1, pp. 27–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. G. D. Quinn, P. J. Patel, and I. Lloyd, “Effect of loading rate upon conventional ceramic microindentation hardness,” Journal of Research of the National Institute of Standards and Technology, vol. 107, no. 3, pp. 299–306, 2002. View at Scopus
  43. M. Bhattacharya, R. Chakraborty, A. Dey, A. K. Mandal, and A. K. Mukhopadhyay, “Improvement in nanoscale contact resistance of alumina,” Applied Physics, vol. 107, no. 4, pp. 783–788, 2012.
  44. M. Bhattacharya, R. Chakraborty, A. Dey, A. K. Mandal, and A. K. Mukhopadhyay, “New observations in micro-pop-in issuesin nanoindentation of coarse grain alumina,” Ceramics International. In press. View at Publisher · View at Google Scholar
  45. H. Bei, Y. F. Gao, S. Shim, E. P. George, and G. M. Pharr, “Strength differences arising from homogeneous versus heterogeneous dislocation nucleation,” Physical Review B, vol. 77, no. 6, Article ID 060103, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. T. F. Page, W. C. Oliver, and C. J. McHargue, “The deformation-behavior of ceramic crystals subjected to very low load (nano)indentations,” Journal of Materials Research, vol. 7, no. 2, pp. 450–473, 1992. View at Scopus
  47. A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos, and S. Suresh, “Discrete and continuous deformation during nanoindentation of thin films,” Acta Materialia, vol. 48, no. 9, pp. 2277–2295, 2000. View at Scopus
  48. C. A. Schuh and A. C. Lund, “Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation,” Journal of Materials Research, vol. 19, no. 7, pp. 2152–2158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Ebisu and S. Horibe, “Analysis of the indentation size effect in brittle materials from nanoindentation load-displacement curve,” Journal of the European Ceramic Society, vol. 30, no. 12, pp. 2419–2426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. B. R. Lawn and D. B. Marshall, “Residual stress effects in failure from flaws,” Journal of the American Ceramic Society, vol. 62, no. 1-2, pp. 106–108, 1979.
  51. A. G. Evans, “Perspective on the development of high-toughness ceramics,” Journal of the American Ceramic Society, vol. 73, no. 2, pp. 187–206, 1990.