About this Journal Submit a Manuscript Table of Contents
ISRN Meteorology
Volume 2012 (2012), Article ID 754902, 14 pages
http://dx.doi.org/10.5402/2012/754902
Research Article

Simulation of Monsoon Precipitation over South-Asia Using RegCM3

1National Engineering and Scientific Commission (NESCOM), Islamabad 44000, Pakistan
2Faculty of Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
3Departamento de Termofluidos, Facultad de Ingeniera, Universidad Nacional Autónoma de México (UNAM), 0451 México, DF, Mexico

Received 16 August 2011; Accepted 12 September 2011

Academic Editor: L.-T. Hsieh

Copyright © 2012 Abdul Basit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Gates, J. F. B. Mitchell, G. J. Goer, U. Cubasch, and V. P. Meleshko, “Climate modeling, climate prediction and model validation,” in Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, J. T. Houghton, B. A. Callander, and S. K. Varney, Eds., pp. 97–134, Cambridge University Press, Cambridge, UK, 1992.
  2. X. Gao, Z. Zhao, and F. Giorgi, “Changes of extreme events in regional climate simulations over East Asia,” Advances in Atmospheric Sciences, vol. 19, no. 5, pp. 927–942, 2002.
  3. L. R. Leung, L. O. Mearns, F. Giorgi, and R. L. Wilby, “Regional climate research,” Bulletin of the American Meteorological Society, vol. 84, no. 1, pp. 89–95, 2003.
  4. D. K. Lee and M. S. Suh, “Ten-year east Asian summer monsoon simulation using a regional climate model (RegCM2),” Journal of Geophysical Research D, vol. 105, no. 24, pp. 29565–29577, 2000.
  5. G. J. Holland, “The maximum potential intensity of tropical cyclones,” Journal of the Atmospheric Sciences, vol. 54, no. 21, pp. 2519–2541, 1995.
  6. F. Giorgi and L. O. Mearns, “Approaches to the simulation of regional climate change: a review,” Reviews of Geophysics, vol. 29, no. 2, pp. 191–216, 1991.
  7. F. Giorgi and L. O. Mearns, “Introduction to special section: regional climate modeling revisited,” Journal of Geophysical Research, vol. 104, pp. 6335–6352, 1999.
  8. J. C. Petch and J. Dudhia, “The importance of the horizontal advection of hydrometeors in a single-column model,” Journal of Climate, vol. 11, no. 9, pp. 2437–2452, 1998.
  9. F. Giorgi, M. R. Marinucci, and G. T. Bates, “Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes,” Monthly Weather Review, vol. 121, no. 10, pp. 2794–2813, 1993.
  10. F. Giorgi, M. R. Marinucci, and G. T. Bates, “Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes,” Monthly Weather Review, vol. 121, no. 10, pp. 2814–2832, 1993.
  11. F. Giorgi, M. R. Marinucci, G. T. Bates, and G. De Canio, “Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions,” Monthly Weather Review, vol. 121, no. 10, pp. 2814–2832, 1993.
  12. M. P. Dudek, X. Z. Liang, and W. C. Wang, “A regional climate model study of the scale dependence of cloud-radiation interactions,” Journal of Climate, vol. 9, no. 6, pp. 1221–1234, 1996.
  13. W. C. Wang, S. Wong, J. K. Sundet, and I. S. R. Isaksen, “Atmospheric ozone as a climate gas: coupled climate-chemistry model study,” in Proceedings of the Quadrennial Ozone Symposium, vol. 63-64, p. 760, Hokkaido University, Sapporo, Japan, July 2000.
  14. J. T. Houghton, B. A. Callander, and S. K. Varney, Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, UK, 1992.
  15. R. E. Dickinson, R. M. Errico, F. Giorgi, and G. T. Bates, “A regional climate model for the western United States,” Climatic Change, vol. 15, no. 3, pp. 383–422, 1989. View at Publisher · View at Google Scholar
  16. F. Giorgi, “Simulation of regional climate using a limited area model nested in a general circulation model,” Journal of Climate, vol. 3, pp. 941–963, 1990.
  17. F. Giorgi and G. T. Bates, “The climatological skill of a regional model over complex terrain,” Monthly Weather Review, vol. 117, no. 11, pp. 2325–2347, 1989.
  18. R. E. Dickinson, A. Henderson-Sellers, and P. J. Kennedy, “Biosphere-atmosphere transfer scheme (BATS) version Ie as coupled to the NCAR Community Climate Model,” NCAR Tech.Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, Colo, USA, 1993.
  19. R. A. Anthes, “A cumulus parameterization scheme utilizing a one-dimensional cloud model,” Monthly Weather Review, vol. 105, no. 3, pp. 270–286, 1977.
  20. E. Y. Hsie, R. A. Anthes, and D. Keyser, “Numerical simulation of frontogenesis in a moist atmosphere,” Journal of the Atmospheric Sciences, vol. 41, no. 17, pp. 2581–2594, 1984.
  21. A. A. M. Holtslag, E. I. F. De Bruijn, and H. L. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Monthly Weather Review, vol. 118, no. 8, pp. 1561–1575, 1990.
  22. G. A. Grell, “Prognostic evaluation of assumptions used by cumulus parameterizations,” Monthly Weather Review, vol. 121, no. 3, pp. 764–787, 1993.
  23. A. Arakawa and W. H. Schubert, “Interaction of a cumulus cloud ensemble with the large-scale environment, Part I,” Journal of the Atmospheric Sciences, vol. 31, pp. 674–701, 1974.
  24. J. M. Fritsch and C. F. Chappell, “Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization,” Journal of the Atmospheric Sciences, vol. 37, no. 8, pp. 1722–1733, 1980.
  25. A. K. Betts, “A new convective adjustment scheme. Part I: observational and theoretical basis,” Quarterly Journal, vol. 112, no. 473, pp. 677–691, 1986.
  26. A. K. Betts and M. J. Miller, “A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets,” Quarterly Journal, vol. 112, no. 473, pp. 693–709, 1986.
  27. X. Zeng, M. Zhao, and R. E. Dickinson, “Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data,” Journal of Climate, vol. 11, no. 10, pp. 2628–2644, 1998.
  28. J. S. Pal, E. E. Small, and E. A. B. Eltahir, “Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM,” Journal of Geophysical Research D, vol. 105, no. 24, pp. 29579–29594, 2000.
  29. X. Z. Liang, K. E. Kunkel, and A. N. Samel, “Development of a regional climate model for U.S. Midwest applications. Part I: sensitivity to buffer zone treatment,” Journal of Climate, vol. 14, no. 23, pp. 4363–4378, 2001. View at Scopus
  30. A. J. Heymsfield and L. J. Donner, “A scheme for parameterizing ice-cloud water content in general circulation models,” Journal of the Atmospheric Sciences, vol. 47, no. 15, pp. 1865–1877, 1990.
  31. H. W. Detering and D. Etling, “Application of the E-ε turbulence model to the atmospheric boundary layer,” Boundary-Layer Meteorology, vol. 33, no. 2, pp. 113–133, 1985. View at Publisher · View at Google Scholar
  32. C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of air-sea fluxes for tropical ocean global atmosphere coupled-ocean atmosphere response experiment,” Journal of Geophysical Research C, vol. 110 C, no. 2, pp. 3747–3764, 1996.
  33. J. Polcher, K. Laval, L. Dümenil, J. Lean, and P. R. Rowntree, “Comparing three land surface schemes used in general circulation models,” Journal of Hydrology, vol. 180, no. 1–4, pp. 373–394, 1996.