About this Journal Submit a Manuscript Table of Contents
ISRN Thermodynamics
Volume 2012 (2012), Article ID 795814, 6 pages
http://dx.doi.org/10.5402/2012/795814
Research Article

Heat Generation and Thermal Radiation Effects over a Stretching Sheet in a Micropolar Fluid

Department of Mathematics, Acharya Nagarjuna University, Ongole Campus, Ongole 523 001, India

Received 6 July 2012; Accepted 26 July 2012

Academic Editors: C. D. Daub and S. Hashimoto

Copyright © 2012 M. Gnaneswara Reddy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 4, pp. 645–647, 1970. View at Publisher · View at Google Scholar · View at Scopus
  2. P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering, vol. 55, no. 6, pp. 744–746, 1977. View at Publisher · View at Google Scholar
  3. L. J. Grubka and K. M. Bobba, “Heat transfer characteristics of a continuous, stretching surface with variable temperature,” Journal of Heat Transfer, vol. 107, no. 1, pp. 248–250, 1985. View at Scopus
  4. C. K. Chen and M. I. Char, “Heat transfer of a continuous, stretching surface with suction or blowing,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 568–580, 1988. View at Scopus
  5. B. K. Dutta, P. Roy, and A. S. Gupta, “Temperature field in flow over a stretching sheet with uniform heat flux,” International Communications in Heat and Mass Transfer, vol. 12, no. 1, pp. 89–94, 1985. View at Scopus
  6. M. E. Ali, “Heat transfer characteristics of a continuous stretching surface,” Heat and Mass Transfer, vol. 29, no. 4, pp. 227–234, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. Ali, “On thermal boundary layer on a power-law stretched surface with suction or injection,” International Journal of Heat and Fluid Flow, vol. 16, no. 4, pp. 280–290, 1995. View at Scopus
  8. N. Afzal and I. S. Varshney, “The cooling of a low heat resistance stretching sheet moving through a fluid,” Wärme- und Stoffübertragung, vol. 14, no. 4, pp. 289–293, 1980. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Afzal, “Heat transfer from a stretching surface,” International Journal of Heat and Mass Transfer, vol. 36, no. 4, pp. 1128–1131, 1993. View at Scopus
  10. C. H. Chen, “Laminar mixed convection adjacent to vertical, continuously stretching sheets,” Heat and Mass Transfer, vol. 33, no. 5-6, pp. 471–476, 1998. View at Scopus
  11. M. Ali and F. Al-Yousef, “Laminar mixed convection from a continuously moving vertical surface with suction or injection,” Heat and Mass Transfer, vol. 33, no. 4, pp. 301–306, 1998. View at Scopus
  12. J. E. Daskalakis, “Free convection effects in the boundary layer along a vertically stretching flat surface,” Canadian Journal of Physics, vol. 70, pp. 1253–1260, 1993.
  13. M. K. Partha, P. V. S. N. Murthy, and G. P. Rajasekhar, “Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface,” Heat and Mass Transfer, vol. 41, no. 4, pp. 360–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Abd El-Aziz, “Temperature dependent viscosity and thermal conductivity effects on combined heat and mass transfer in MHD three-dimensional flow over a stretching surface with Ohmic heating,” Meccanica, vol. 42, no. 4, pp. 375–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. R. Mahapatra, S. Dholey, and A. S. Gupta, “Momentum and heat transfer in the magnetohydrodynamic stagnation-point flow of a viscoelastic fluid toward a stretching surface,” Meccanica, vol. 42, no. 3, pp. 263–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Ishak, R. Nazar, and I. Pop, “Unsteady mixed convection boundary layer flow due to a stretching vertical surface,” Arabian Journal for Science and Engineering, vol. 31, no. 2, pp. 165–182, 2006. View at Scopus
  17. A. Ishak, R. Nazar, and I. Pop, “Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet,” Magnetohydrodynamics, vol. 43, no. 1, pp. 83–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ishak, R. Nazar, and I. Pop, “Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet,” Meccanica, vol. 41, no. 5, pp. 509–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Ishak, R. Nazar, and I. Pop, “Mixed convection on the stagnation point flow toward a vertical, continuously stretching sheet,” Journal of Heat Transfer, vol. 129, no. 8, pp. 1087–1090, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ishak, R. Nazar, and I. Pop, “Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet,” Heat and Mass Transfer, vol. 44, no. 8, pp. 921–927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. C. Chiam, “Micropolar fluid flow over a stretching sheet,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 62, pp. 565–568, 1982.
  22. M. W. Heruska, L. T. Watson, and K. K. Sankara, “Micropolar flow past a porous stretching sheet,” Computers and Fluids, vol. 14, no. 2, pp. 117–129, 1986. View at Scopus
  23. R. S. Agarwal, R. Bhargava, and A. V. S. Balaji, “Finite element solution of flow and heat transfer of a micropolar fluid over a stretching sheet,” International Journal of Engineering Science, vol. 27, no. 11, pp. 1421–1428, 1989. View at Scopus
  24. I. A. Hassanien and R. S. R. Gorla, “Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing,” Acta Mechanica, vol. 84, no. 1–4, pp. 191–199, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. N. A. Kelson and A. Desseaux, “Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet,” International Journal of Engineering Science, vol. 39, no. 16, pp. 1881–1897, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. N. A. Kelson and T. W. Farrell, “Micropolar flow over a porous stretching sheet with strong suction or injection,” International Communications in Heat and Mass Transfer, vol. 28, no. 4, pp. 479–488, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Nazar, N. Amin, D. Filip, and I. Pop, “Stagnation point flow of a micropolar fluid towards a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 39, no. 7, pp. 1227–1235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Hayat, Z. Abbas, and T. Javed, “Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet,” Physics Letters A, vol. 372, no. 5, pp. 637–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Ahmadi, “Self-similar solution of imcompressible micropolar boundary layer flow over a semi-infinite plate,” International Journal of Engineering Science, vol. 14, no. 7, pp. 639–646, 1976. View at Scopus
  30. M. Q. Brewster, Thermal Radiative Transfer Properties, Wiley, New York, NY, USA, 1992.
  31. M. K. Jain, S. R. K. Iyengar, and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, Wiley Eastern, New Delhi, India, 1985.
  32. A. Ishak, “Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect,” Meccanica, vol. 45, no. 3, pp. 367–373, 2010. View at Publisher · View at Google Scholar · View at Scopus