About this Journal Submit a Manuscript Table of Contents
ISRN Pediatrics
Volume 2012 (2012), Article ID 806920, 6 pages
http://dx.doi.org/10.5402/2012/806920
Review Article

Component-Resolved Diagnosis in Pediatrics

Asthma and Allergy Clinic, Children’s Clinic Randers, Dytmærsken 9, 8900 Randers, Denmark

Received 5 June 2012; Accepted 28 June 2012

Academic Editors: M. Sánchez-Solís, K. Tokiwa, and D. D. Trevisanuto

Copyright © 2012 Ole D. Wolthers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Sastre, “Molecular diagnosis in allergy,” Clinical and Experimental Allergy, vol. 40, no. 10, pp. 1442–1460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. P. Borres, M. Ebisawa, and P. A. Eigenmann, “Use of allergen components begins a new era in pediatric allergology,” Pediatric Allergy and Immunology, vol. 22, no. 5, pp. 454–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ferrer, M. L. Sanz, J. Sastre, et al., “Molecular diagnosis in allergologgy: application of the microarray technique,” Journal Allergology and Clinical Immunology, vol. 19, supplement 1, pp. 19–24, 2009.
  4. J. Lidholm, B. K. Ballmer-Weber, A. Mari, and S. Vieths, “Component-resolved diagnostics in food allergy,” Current Opinion in Allergy and Clinical Immunology, vol. 6, no. 3, pp. 234–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. E. Flinterman, E. van Hoffen, C. F. den Hartog Jager et al., “Children with peanut allergy recognize predominantly Ara h2 and Ara h6, which remains stable over time,” Clinical and Experimental Allergy, vol. 37, no. 8, pp. 1221–1228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. A. McDermott, H. S. Porterfield, R. E. Mezayen et al., “Contribution of Ara h 2 to peanut-specific, immunoglobulin E-mediated, cell activation,” Clinical and Experimental Allergy, vol. 37, no. 5, pp. 752–763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Mittag, J. Akkerdaas, B. K. Ballmer-Weber et al., “Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy,” Journal of Allergy and Clinical Immunology, vol. 114, no. 6, pp. 1410–1417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Nicolaou, C. Murray, D. Belgrave, M. Poorafshar, A. Simpson, and A. Custovic, “Quantification of specific IgE to whole peanut extract and peanut components in prediction of peanut allergy,” Journal of Allergy and Clinical Immunology, vol. 127, no. 3, pp. 684–685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Asarnoj, E. Östblom, S. Ahlstedt et al., “Reported symptoms to peanut between 4 and 8 years among children sensitized to peanut and birch pollen—results from the BAMSE birth cohort,” Allergy, vol. 65, no. 2, pp. 213–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. A. Pastorello, S. Vieths, V. Pravettoni et al., “Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results,” Journal of Allergy and Clinical Immunology, vol. 109, no. 3, pp. 563–570, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Hansen, B. K. Ballmer-Weber, J. Sastre et al., “Component-resolved in vitro diagnosis of hazelnut allergy in Europe,” Journal of Allergy and Clinical Immunology, vol. 123, no. 5, pp. 1134–e3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Komata, L. Söderström, M. P. Borres, H. Tachimoto, and M. Ebisawa, “Usefulness of wheat and soybean specific IgE antibody titers for the diagnosis of food allergy,” Allergology International, vol. 58, no. 4, pp. 599–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Ito, M. Futamura, M. P. Borres et al., “IgE antibodies to ω-5 gliadin associate with immediate symptoms on oral wheat challenge in Japanese children,” Allergy, vol. 63, no. 11, pp. 1536–1542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Battais, F. Pineau, Y. Popineau et al., “Food allergy to wheat: identification of immunogloglin E and immunoglobulin G-binding proteins with sequential extracts and purified proteins from wheat flour,” Clinical and Experimental Allergy, vol. 33, no. 7, pp. 962–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ito, S. Sjölander, S. Sato et al., “IgE to Gly m 5 and Gly m 6 is associated with severe allergic reactions to soybean in Japanese children,” Journal of Allergy and Clinical Immunology, vol. 128, no. 3, pp. 673–675, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Holzhauser, O. Wackermann, B. K. Ballmer-Weber et al., “Soybean (Glycine max) allergy in Europe: Gly m 5 (β-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 452.e4–458.e4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. J. Park, J. H. Kim, J. E. Kim, et al., “Diagnostic value of the serum-specific IgE ratio of ?-5 gliadin to wheat in adult patients with wheat-induced anaphylaxis,” International Archives of Allergy and Immunology, vol. 157, no. 2, pp. 147–150, 2011.
  18. P. Kosma, S. Sjölander, E. Landgren, M. P. Borres, and G. Hedlin, “Severe reactions after the intake of soy drink in birch pollen-allergic children sensitized to Gly m 4,” Acta Paediatrica, vol. 100, no. 2, pp. 305–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. H. Benhamou, J. C. Caubet, P. A. Eigenmann et al., “State of the art and new horizons in the diagnosis and management of egg allergy,” Allergy, vol. 65, no. 3, pp. 283–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Ando, R. Movérare, Y. Kondo et al., “Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy,” Journal of Allergy and Clinical Immunology, vol. 122, no. 3, pp. 583–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Lemon-Mulé, H. A. Sampson, S. H. Sicherer, W. G. Shreffler, S. Noone, and A. Nowak-Wegrzyn, “Immunologic changes in children with egg allergy ingesting extensively heated egg,” Journal of Allergy and Clinical Immunology, vol. 122, no. 5, pp. 977.e1–983.e1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Boyano-Martínez, C. García-Ara, M. Pedrosa, J. M. Díaz-Pena, and S. Quirce, “Accidental allergic reactions in children allergic to cow's milk proteins,” Journal of Allergy and Clinical Immunology, vol. 123, no. 4, pp. 883–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Constantin, S. Quirce, M. Poorafshar et al., “Micro-arrayed wheat seed and grass pollen allergens for component-resolved diagnosis,” Allergy, vol. 64, no. 7, pp. 1030–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Hejl, P. A. Wurtzen, J. Kleine-Tebbe, N. Johansen, L. Broge, and H. Ipsen, “Phleum pratense alone is sufficient for allergen-specific immunotherapy against allergy to Pooideae grass pollens,” Clinical and Experimental Allergy, vol. 39, no. 5, pp. 752–759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Swoboda, T. Twaroch, R. Valenta, and M. Grote, “Tree pollen allergens,” Clinical Allergy and Immunology, vol. 21, pp. 87–105, 2008. View at Scopus
  26. G. Menz, C. Dolecek, U. Schönheit-Kenn et al., “Serological and skin-test diagnosis of birch pollen allergy with recombinant Bet v I, the major birch pollen allergen,” Clinical and Experimental Allergy, vol. 26, no. 1, pp. 50–60, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Movérare, K. Westritschnig, M. Svensson et al., “Different IgE reactivity profiles in birch pollen-sensitive patients from six European populations revealed by recombinant allergens: an imprint of local sensitization,” International Archives of Allergy and Immunology, vol. 128, no. 4, pp. 325–335, 2002. View at Scopus
  28. N. Mothes and R. Valenta, “Biology of tree pollen allergens,” Current Allergy and Asthma Reports, vol. 4, no. 5, pp. 384–390, 2004. View at Scopus
  29. A. Martínez, J. A. Asturias, J. Monteseirín et al., “The allergenic relevance of profilin (Ole e 2) from Olea europaea pollen,” Allergy, vol. 57, supplement 71, pp. 17–23, 2002. View at Scopus
  30. R. Valenta, B. Hayek, S. Seiberler et al., “Calcium-binding allergens: from plants to man,” International Archives of Allergy and Immunology, vol. 117, no. 3, pp. 160–166, 1998. View at Scopus
  31. G. Pittner, S. Vrtala, W. R. Thomas et al., “Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens,” Clinical and Experimental Allergy, vol. 34, no. 4, pp. 597–603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Fernandes, A. Reshef, L. Patton, R. Ayuso, G. Reese, and S. B. Lehrer, “Immunoglobulin E antibody reactivity to the major shrimp allergen, tropomyosin, in unexposed Orthodox Jews,” Clinical and Experimental Allergy, vol. 33, no. 7, pp. 956–961, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Grönlund, T. Saarne, G. Gafvelin, and M. van Hage, “The major cat allergen, fel d 1, in diagnosis and therapy,” International Archives of Allergy and Immunology, vol. 151, no. 4, pp. 265–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Hilger, M. Kohnen, F. Grigioni, C. Lehners, and F. Hentges, “Allergic cross-reactions between cat and pig serum albumin. Study at the protein and DNA levels,” Allergy, vol. 52, no. 2, pp. 179–187, 1997. View at Scopus
  35. S. Saarelainen, A. Taivainen, M. Rytkönen-Nissinen et al., “Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy,” Clinical and Experimental Allergy, vol. 34, no. 10, pp. 1576–1582, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Mattsson, T. Lundgren, H. Everberg, H. Larsson, and J. Lidholm, “Prostatic kallikrein: a new major dog allergen,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 362.e3–368.e3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Cabanas, M. C. Lopez-Serrano, J. Carreira, et al., “Importance of albumin in cross-reactivity among cat, dog and horse allergens,” Journal of Investigational Allergology and Clinical Immunology, vol. 10, pp. 71–77, 2000.
  38. S. Saarelainen, M. Rytkönen-Nissinen, J. Rouvinen et al., “Animal-derived lipocalin allergens exhibit immunoglobulin E cross-reactivity,” Clinical and Experimental Allergy, vol. 38, no. 2, pp. 374–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. D. C. De Graaf, M. Aerts, E. Danneels, and B. Devreese, “Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy,” Journal of Proteomics, vol. 72, no. 2, pp. 145–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. M. Biló, F. Rueff, H. Mosbech et al., “Diagnosis of Hymenoptera venom allergy,” Allergy, vol. 60, no. 11, pp. 1339–1349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Skamstrup Hansen and L. K. Poulsen, “Component resolved testing for allergic sensitization,” Current Allergy and Asthma Reports, vol. 10, no. 5, pp. 340–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. O. D. Wolthers and M. Staberg, “A comparison of the usefulness of the multiple allergen simultaneous test-chemiluminescent assay as compared to the phadia immunocap IgE test panel system in children and adolescents.,” Recent Patents on Inflammation & Allergy Drug Discovery. In press.