About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2012 (2012), Article ID 826863, 13 pages
http://dx.doi.org/10.5402/2012/826863
Review Article

Immune Recognition of Heat Shock Proteins Provides a Molecular Basis for the “Hygiene Hypothesis” Linking High Prevalence of Immune Disorders to Lack of Cell Stress Eliciting Events

Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands

Received 11 October 2012; Accepted 31 October 2012

Academic Editors: S. Sánchez-Ramón and A. Tommasini

Copyright © 2012 W. van Eden. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Strachan, “Hay fever, hygiene, and household size,” British Medical Journal, vol. 299, no. 6710, pp. 1259–1260, 1989. View at Scopus
  2. M. B. Emanuel, “Hay fever, a post industrial revolution epidemic: a history of its growth during the 19th century,” Clinical Allergy, vol. 18, no. 3, pp. 295–304, 1988. View at Scopus
  3. F. Guarner, R. Bourdet-Sicard, P. Brandtzaeg et al., “Mechanisms of disease: the hygiene hypothesis revisited,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 3, no. 5, pp. 275–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. F. Bach, “The effect of infections on susceptibility to autoimmune and allergic diseases,” New England Journal of Medicine, vol. 347, no. 12, pp. 911–920, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Sheikh and D. P. Strachan, “The hygiene theory: fact or fiction?” Current Opinion in Otolaryngology and Head and Neck Surgery, vol. 12, no. 3, pp. 232–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Koppen, R. De Groot, H. J. Neijens, N. Nagelkerke, W. Van Eden, and H. C. Rümke, “No epidemiological evidence for infant vaccinations to cause allergic disease,” Vaccine, vol. 22, no. 25-26, pp. 3375–3385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. M. Matricardi, F. Rosmini, L. Ferrigno et al., “Cross sectional retrospective study of prevalence of atopy among Italian military students with antibodies against hepatitis A virus,” British Medical Journal, vol. 314, no. 7086, pp. 999–1003, 1997. View at Scopus
  8. S. F. Bloomfield, R. Stanwell-Smith, R. W. R. Crevel, and J. Pickup, “Too clean, or not too clean: the Hygiene Hypothesis and home hygiene,” Clinical and Experimental Allergy, vol. 36, no. 4, pp. 402–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Whitlock and M. Feelish, “Soil bacteria, nitrite, and the skin,” in The Hygiene Hypothesis and Darwinian Medicine, A. W. Graham, Ed., pp. 103–116, Birkhauser, Basel, Switzerland, 2009.
  10. G. A. W. Rook, “99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the “hygiene” or “old friends” hypothesis,” Clinical and Experimental Immunology, vol. 160, no. 1, pp. 70–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. W. Summers, D. E. Elliot, J. F. Urban, R. Thompson, and J. V. Weinstock, “Trichuris suis therapy in Crohn's disease,” Gut, vol. 54, no. 1, pp. 87–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Mortimer, A. Brown, J. Feary et al., “Dose-ranging study for trials of therapeutic infection with necator Americanus in humans,” American Journal of Tropical Medicine and Hygiene, vol. 75, no. 5, pp. 914–920, 2006. View at Scopus
  13. D. Blount, D. Hooi, J. Feary et al., “Immunologic profiles of persons recruited for a randomized, placebo-controlled clinical trial of hookworm infection,” American Journal of Tropical Medicine and Hygiene, vol. 81, no. 5, pp. 911–916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Harada, Y. Kishimoto, and S. Makino, “Prevention of overt diabetes and insulitis in NOD mice by a single BCG vaccination,” Diabetes Research and Clinical Practice, vol. 8, no. 2, pp. 85–89, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. D. L. Faustman, L. Wang, Y. Okubo et al., “Proof-of-concept, randomized, controlled clinical trial of bacillus-calmette-guerin for treatment of long-term type 1 diabetes,” PLoS ONE, vol. 7, no. 8, Article ID e41756, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. V. C. Adams, J. R. F. Hunt, R. Martinelli, R. Palmer, G. A. W. Rook, and L. R. Brunet, “Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice,” European Journal of Immunology, vol. 34, no. 3, pp. 631–638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Van der Kleij, E. Latz, J. F. H. M. Brouwers et al., “A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization,” Journal of Biological Chemistry, vol. 277, no. 50, pp. 48122–48129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. H. H. Smits, A. Engering, D. Van Der Kleij et al., “Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin,” Journal of Allergy and Clinical Immunology, vol. 115, no. 6, pp. 1260–1267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Lai, A. Di Nardo, T. Nakatsuji et al., “Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin injury,” Nature Medicine, vol. 15, no. 12, pp. 1377–1382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Viglietta, C. Baecher-Allan, H. L. Weiner, and D. A. Hafler, “Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis,” Journal of Experimental Medicine, vol. 199, no. 7, pp. 971–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Arif, T. I. Tree, T. P. Astill et al., “Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health,” Journal of Clinical Investigation, vol. 113, no. 3, pp. 451–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Karlsson, J. Rugtveit, and P. Brandtzaeg, “Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy,” Journal of Experimental Medicine, vol. 199, no. 12, pp. 1679–1688, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. U. Haddeland, A. B. Karstensen, L. Farkas et al., “Putative regulatory T cells are impaired in cord blood from neonates with hereditary allergy risk,” Pediatric Allergy and Immunology, vol. 16, no. 2, pp. 104–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. A. Long and J. H. Buckner, “CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game,” Journal of Immunology, vol. 187, no. 5, pp. 2061–2066, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. R. Van Amelsfort, K. M. G. Jacobs, J. W. J. Bijlsma, F. P. J. G. Lafeber, and L. S. Taams, “CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid,” Arthritis and Rheumatism, vol. 50, no. 9, pp. 2775–2785, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Wehrens, G. Mijnheer, C. L. Duurland et al., “Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells,” Blood, vol. 118, no. 13, pp. 3538–3548, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. W. van Eden, J. E. Thole, R. van der Zee, et al., “Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis,” Nature, vol. 331, no. 6152, pp. 171–173, 1988.
  28. A. Asea and B. K. Pedersen, Heat Shock Proteins and Whole Body Physiology, Springer, 2010.
  29. E. Repasky and R. Issels, “Physiological consequences of hyperthermia: Heat, heat shock proteins and the immune response,” International Journal of Hyperthermia, vol. 18, no. 6, pp. 486–489, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Koga, A. Wand-Wurttenberger, J. DeBruyn, M. E. Munk, B. Schoel, and S. H. E. Kaufmann, “T cells against a bacterial heat shock protein recognize stressed macrophages,” Science, vol. 245, no. 4922, pp. 1112–1115, 1989. View at Scopus
  31. J. R. Newcomb and P. Cresswell, “Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated αβ dimers,” Journal of Immunology, vol. 150, no. 2, pp. 499–507, 1993. View at Scopus
  32. V. L. Crotzer and J. S. Blum, “Autophagy and intracellular surveillance: modulating MHC class II antigen presentation with stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7779–7780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Levine, N. Mizushima, and H. W. Virgin, “Autophagy in immunity and inflammation,” Nature, vol. 469, no. 7330, pp. 323–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Kaushik and A. M. Cuervo, “Chaperone-mediated autophagy: a unique way to enter the lysosome world,” Trends in Cell Biology, vol. 22, no. 8, pp. 407–417, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Dengjel, O. Schoor, R. Fischer et al., “Autophagy promotes MHC class II presentation of peptides from intracellular source proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7922–7927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. C. Van Herwijnen, L. Wieten, R. Van Der Zee, et al., “Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 35, pp. 14134–14139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. R. J. Du and B. Ho, “Surface localized heat shock protein 20 (HslV) of Helicobacter pylori,” Helicobacter, vol. 8, no. 4, pp. 257–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. S. Anderson, E. S. Venanzi, L. Klein et al., “Projection of an immunological self shadow within the thymus by the aire protein,” Science, vol. 298, no. 5597, pp. 1395–1401, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. O. S. Birk, D. C. Douek, D. Elias et al., “A role of Hsp60 in autoimmune diabetes: Analysis in a transgenic model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 3, pp. 1032–1037, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. J. R. Ostberg, K. C. Kaplan, and E. A. Repasky, “Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia,” International Journal of Hyperthermia, vol. 18, no. 6, pp. 552–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. I. R. Cohen, “Biomarkers, self-antigens and the immunological homunculus,” Journal of Autoimmunity, vol. 29, no. 4, pp. 246–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Pashov, A. Kenderov, S. Kyurkchiev et al., “Autoantibodies to heat shock protein 90 in the human natural antibody repertoire,” International Immunology, vol. 14, no. 5, pp. 453–461, 2002. View at Scopus
  43. M. W. Whitehouse, “Adjuvant arthritis 50 years on: the impact of the 1956 article by C. M. Pearson, “Development of arthritis, periarthritis and periostitis in rats given adjuvants”,” Inflammation Research, vol. 56, no. 4, pp. 133–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Holoshitz, Y. Naparstek, A. Ben-Nun, and I. R. Cohen, “Lines of T lymphocytes induce or vaccinate against autoimmune arthritis,” Science, vol. 219, no. 4580, pp. 56–58, 1983. View at Scopus
  45. M. E. J. Billingham, S. Carney, R. Butler, and M. J. Colston, “A mycobacterial 65-kD heat shock protein induces antigen-specific suppression of adjuvant arthritis, but is not itself arthritogenic,” Journal of Experimental Medicine, vol. 171, no. 1, pp. 339–344, 1990. View at Publisher · View at Google Scholar · View at Scopus
  46. A. E. Kingston, C. A. Hicks, M. J. Colston, and M. E. J. Billingham, “A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis,” Clinical and Experimental Immunology, vol. 103, no. 1, pp. 77–82, 1996. View at Scopus
  47. M. F. Van den Broek, E. J. M. Hogervorst, M. C. J. Van Bruggen, W. Van Eden, R. Van der Zee, and W. B. Van den Berg, “Protection against streptococcal cell wall-induced arthritis by pretreatment with the 65-kD mycobacterial heat shock protein,” Journal of Experimental Medicine, vol. 170, no. 2, pp. 449–466, 1989. View at Scopus
  48. S. J. Thompson, J. N. Francis, L. K. Siew et al., “An immunodominant epitope from mycobacterial 65-kDa heat shock protein protects against pristane-induced arthritis,” Journal of Immunology, vol. 160, no. 9, pp. 4628–4634, 1998. View at Scopus
  49. S. Ragno, M. J. Colston, D. B. Lowrie, V. R. Winrow, D. R. Blake, and R. Tascon, “Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65,” Arthritis and Rheumatism, vol. 40, no. 2, pp. 277–283, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. S. M. Anderton, R. Van Der Zee, B. Prakken, A. Noordzij, and W. Van Eden, “Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis,” Journal of Experimental Medicine, vol. 181, no. 3, pp. 943–952, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. K. D. Moudgil, T. T. Chang, H. Eradat et al., “Diversification of T cell responses to carboxy-terminal determinants within the 65-kD heat-shock protein is involved in regulation of autoimmune arthritis,” Journal of Experimental Medicine, vol. 185, no. 7, pp. 1307–1316, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Ulmansky, C. J. Cohen, F. Szafer et al., “Resistance to adjuvant arthritis is due to protective antibodies against heat shock protein surface epitopes and the induction of IL-10 secretion,” Journal of Immunology, vol. 168, no. 12, pp. 6463–6469, 2002. View at Scopus
  53. M. A. Haque, S. Yoshino, S. Inada, H. Nomaguchi, O. Tokunaga, and O. Kohashi, “Suppression of adjuvant arthritis in rats by induction of oral tolerance to mycobacterial 65-kDa heat shock protein,” European Journal of Immunology, vol. 26, no. 11, pp. 2650–2656, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. P. M. Cobelens, C. J. Heijnen, E. E. S. Nieuwenhuis et al., “Treatment of adjuvant-induced arthritis by oral administration of mycobacterial Hsp65 during disease,” Arthritis and Rheumatism, vol. 43, no. 12, pp. 2694–2702, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. P. M. Cobelens, A. Kavelaars, A. Vroon et al., “The β2-adrenergic agonist salbutamol potentiates oral induction of tolerance, suppressing adjuvant arthritis and antigen-specific immunity,” Journal of Immunology, vol. 169, no. 9, pp. 5028–5035, 2002. View at Scopus
  56. S. Ragno, V. R. Winrow, P. Mascagni et al., “A synthetic 10-kD heat shock protein (hsp10) from Mycobacterium tuberculosis modulates adjuvant arthritis,” Clinical and Experimental Immunology, vol. 103, no. 3, pp. 384–390, 1996. View at Scopus
  57. B. J. Prakken, U. Wendling, R. Van der Zee, V. P. M. G. Rutten, W. Kuis, and W. Van Eden, “Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins,” Journal of Immunology, vol. 167, no. 8, pp. 4147–4153, 2001. View at Scopus
  58. L. Wieten, S. E. Berlo, C. B. ten Brink et al., “IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis,” PLoS ONE, vol. 4, no. 1, Article ID e4186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Tanaka, Y. Kimura, A. Mitani et al., “Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis,” Journal of Immunology, vol. 163, no. 10, pp. 5560–5565, 1999. View at Scopus
  60. U. Wendling, L. Paul, R. Van Der Zee, B. Prakken, M. Singh, and W. Van Eden, “A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue,” Journal of Immunology, vol. 164, no. 5, pp. 2711–2717, 2000. View at Scopus
  61. D. Elias, T. Reshef, O. S. Birk, R. Van der Zee, M. D. Walker, and I. R. Cohen, “Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3088–3091, 1991. View at Scopus
  62. J. Bockova, D. Elias, and I. R. Cohen, “Treatment of NOD diabetes with a novel peptide of the hsp60 molecule induces Th2-type antibodies,” Journal of Autoimmunity, vol. 10, no. 4, pp. 323–329, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Aldridge, “Toll-like receptor blocker slows beta cell death in type 1 diabetes,” Nature biotechnology, vol. 30, no. 2, pp. 124–124C, 2012. View at Scopus
  64. K. Brudzynski, V. Martinez, and R. S. Gupta, “Secretory granule autoantigen in insulin-dependent diabetes mellitus is related to 62 kDa heat-shock protein (hsp60),” Journal of Autoimmunity, vol. 5, no. 4, pp. 453–463, 1992. View at Publisher · View at Google Scholar · View at Scopus
  65. A. G. S. Van Halteren, B. Mosselman, B. O. Roep et al., “T cell reactivity to heat shock protein 60 in diabetes-susceptible and genetically protected nonobese diabetic mice is associated with a protective cytokine profile,” Journal of Immunology, vol. 165, no. 10, pp. 5544–5551, 2000. View at Scopus
  66. R. Y. Chandawarkar, M. S. Wagh, J. T. Kovalchin, and P. Srivastava, “Immune modulation with high-dose heat-schock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis,” International Immunology, vol. 16, no. 4, pp. 615–624, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Wachlin, L. Heine, I. Klöting, A. Dunger, H. J. Hahn, and S. Schmidt, “Stress response to pancreatic islets from diabetes prone BB rats of different age,” Autoimmunity, vol. 35, no. 6, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. Q. Xu, H. Dietrich, H. J. Steiner et al., “Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65,” Arteriosclerosis and Thrombosis, vol. 12, no. 7, pp. 789–799, 1992. View at Scopus
  69. G. Wick, M. Knoflach, and Q. Xu, “Autoimmune and inflammatory mechanisms in atherosclerosis,” Annual Review of Immunology, vol. 22, pp. 361–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Wick, H. Perschinka, and G. Millonig, “Atherosclerosis as an autoimmune disease: an update,” Trends in Immunology, vol. 22, no. 12, pp. 665–669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. G. K. Hansson, “Vaccination against atherosclerosis: Science or fiction?” Circulation, vol. 106, no. 13, pp. 1599–1601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Almanzar, R. Ollinger, and J. Leuenberger, “Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions,” Journal of Autoimmunity. In press.
  73. R. Maron, G. Sukhova, A. M. Faria et al., “Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice,” Circulation, vol. 106, no. 13, pp. 1708–1715, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Harats, N. Yacov, B. Gilburd, Y. Shoenfeld, and J. George, “Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions,” Journal of the American College of Cardiology, vol. 40, no. 7, pp. 1333–1338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. G. H. M. Van Puijvelde, T. Van Es, E. J. A. Van Wanrooij et al., “Induction of oral tolerance to HSP60 or an HSP60-peptide activates t cell regulation and reduces atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2677–2683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. G. K. Hansson, P. Libby, U. Schönbeck, and Z. Q. Yan, “Innate and adaptive immunity in the pathogenesis of atherosclerosis,” Circulation Research, vol. 91, no. 4, pp. 281–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Iwasaki and R. Medzhitov, “Toll-like receptor control of the adaptive immune responses,” Nature Immunology, vol. 5, no. 10, pp. 987–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Asea, M. Rehli, E. Kabingu et al., “Novel signal transduction pathway utilized by extracellular HSP70. Role of toll-like receptor (TLR) 2 and TLR4,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 15028–15034, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Henderson, S. K. Calderwood, A. R. M. Coates et al., “Caught with their PAMPs down? the extracellular signalling actions of molecular chaperones are not due to microbial contaminants,” Cell Stress and Chaperones, vol. 15, no. 2, pp. 123–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. W. Van Eden, R. Spiering, F. Broere, and R. Van Der Zee, “A case of mistaken identity: HSPs are no DAMPs but DAMPERs,” Cell Stress and Chaperones, vol. 17, no. 3, pp. 281–292, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. S. C. Higgins, E. C. Lavelle, C. McCann et al., “Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology,” Journal of Immunology, vol. 171, no. 6, pp. 3119–3127, 2003. View at Scopus
  82. M. G. Netea, R. Sutmuller, C. Hermann et al., “Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells,” Journal of Immunology, vol. 172, no. 6, pp. 3712–3718, 2004. View at Scopus
  83. A. Kinnunen, H. M. Surcel, M. Halttunen et al., “Chlamydia trachomatis heat shock protein-60 induced interferon-γ and interleukin-10 production in infertile women,” Clinical and Experimental Immunology, vol. 131, no. 2, pp. 299–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Wang, C. G. Kelly, J. T. Karttunen et al., “Cd40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines,” Immunity, vol. 15, no. 6, pp. 971–983, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Stordeur and M. Goldman, “Interleukin-10 as a regulatory cytokine induced by cellular stress: molecular aspects,” International Reviews of Immunology, vol. 16, no. 5-6, pp. 501–522, 1998. View at Scopus
  86. I. Caramalho, T. Lopes-Carvalho, D. Ostler, S. Zelenay, M. Haury, and J. Demengeot, “Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide,” Journal of Experimental Medicine, vol. 197, no. 4, pp. 403–411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. R. P. M. Sutmuller, M. H. M. G. M. Den Brok, M. Kramer et al., “Toll-like receptor 2 controls expansion and function of regulatory T cells,” Journal of Clinical Investigation, vol. 116, no. 2, pp. 485–494, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Zanin-Zhorov, L. Cahalon, G. Tal, R. Margalit, O. Lider, and I. R. Cohen, “Heat shock protein 60 enhances CD4+CD25+ regulatory T cell function via innate TLR2 signaling,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 2022–2032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. T. J. Borges, B. N. Porto, C. A. Teixeira et al., “Prolonged survival of allografts induced by mycobacterial Hsp70 is dependent on CD4+CD25+ regulatory T cells,” PLoS ONE, vol. 5, no. 12, Article ID e14264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. T. J. Borges, L. Wieten, M. J. van Herwijnen et al., “The anti-inflammatory mechanisms of Hsp70,” Frontiers in Immunology, vol. 3, article 95, 2012.
  91. W. Van Eden, R. Van Der Zee, and B. Prakken, “Heat-shock proteins induce T-cell regulation of chronic inflammation,” Nature Reviews Immunology, vol. 5, no. 4, pp. 318–330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. E. M. Shevach, “Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression,” Immunity, vol. 30, no. 5, pp. 636–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Dillon, S. Agrawal, K. Banerjee et al., “Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance,” Journal of Clinical Investigation, vol. 116, no. 4, pp. 916–928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Rakoff-Nahoum, J. Paglino, F. Eslami-Varzaneh, S. Edberg, and R. Medzhitov, “Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis,” Cell, vol. 118, no. 2, pp. 229–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Tao, K. A. Drabik, T. S. Waypa et al., “Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells,” American Journal of Physiology, vol. 290, no. 4, pp. C1018–C1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. E. C. Koffeman, M. Genovese, D. Amox et al., “Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial,” Arthritis and Rheumatism, vol. 60, no. 11, pp. 3207–3216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Wieten, R. Van Der Zee, R. Spiering et al., “A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis,” Arthritis and Rheumatism, vol. 62, no. 4, pp. 1026–1035, 2010. View at Publisher · View at Google Scholar · View at Scopus