About this Journal Submit a Manuscript Table of Contents
ISRN Optics
VolumeΒ 2012Β (2012), Article IDΒ 841695, 4 pages
http://dx.doi.org/10.5402/2012/841695
Research Article

SCLC Degradation in 980 nm Pump Laser by Using Electrical Noise

1Centre d’Electronique et de MicrooptoΓ©lectronique de Montpellier (CEM2), UniversitΓ© Montpellier II, 34095 Montpellier Cedex 5, France
2HIRLA, Damascus University, 99 Damascus, Syria

Received 16 November 2011; Accepted 5 December 2011

Academic Editors: R.Β JΓ€ger and D.-N.Β Wang

Copyright Β© 2012 B. Orsal and I. Asaad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The knowledge of the noise levels is important for pump laser diodes as it allows to study and to locate the noise sources and their origin. 980 nm fresh and aged pump lasers have been characterized by using electrical noise measurements. At 10 Hz, the spectra are dominated by 1/π‘“π‘š (1β‰€π‘šβ‰€2) noise. Current noise spectral density (CNSD) is dominated by πΌπ‘šπΏ (1<π‘šβ‰€2). The trapping defect density near the n+n- and p+p- interfaces is related to pinching of the space-charge-limited current (SCLC) effect. An excess electrical noise due to longitudinal mode hopping is correlated with optical power fluctuations.

1. Introduction

In this work, we present the electrical noise at low frequency for fresh pump laser diodes emitting at 980 nm (reference laser), and we study the parametric evolution and the defects generated in aged 980 nm, stressed during 400 hrs at 50Β°C and high current injection (500 mA) (aged laser).

2. Device Description

The device used in this study is a conventional ridge waveguide AlGaAs/InGaAs pump laser with a GRIN-SCH (Graded Index Separate Confinement Heterostructure) and a Single Quantum Well (SQW) (p+pβˆ’,n+nβˆ’) emitting at 980 nm. The laser has a cavity length of 1200 μm and is coated, for the 50Β°C aging tests, with standard low- (β‰…1%) and high-reflectivity (β‰…90%) coatings on the facets. A different coating reflectivity and aging configuration has also been studied in a previous work [1–3].

3. Static Characteristic of the Pump Laser Diode

From the static analysis, current laser versus externally applied voltage 𝐼𝐿(𝑉𝐿), we then deduce in Figure 1 the evolution of the differential resistance 𝑅𝑑=𝑑𝑉𝐿/𝑑𝐼𝐿. The 𝑅𝑑(𝐼𝐿) characteristic recorded after 400 h of aging under a stress at 50Β°C and high current density injection (500 mA) was compared with the same laser diode before aging.

841695.fig.001
Figure 1: Dynamic resistance 𝑅𝑑 versus laser current 𝐼𝐿.

Before threshold, differential resistance is proportional to πΌπΏβˆ’1; above threshold current (𝐼𝐿>18 mA), 𝑅𝑑 decreases to πΌπΏβˆ’1/2. This phenomenon is usually observed when the carriers are injected from high doping material to low doping material. In our structure, the carriers are injected from n+ or p+ into nβˆ’ or pβˆ’.

The physical phenomenon can be explained in Figure 2. The p+pβˆ’ and n+nβˆ’ interfaces form space charge regions. The carriers are prevented to go into quantum well by the two space charge effects; then, the carrier injection is associated to space-charge-limited current effect (SCLC) [4, 5].

841695.fig.002
Figure 2: Space-charge-limited current effect observed in the laser layers.

Consider the relation of Mott-Gurney:𝐼𝐿,SCLC=9πœ€πœ€0πœ‡8𝐿3𝑉2,(1) where πœ€ is the dielectric constant, πœ€0 the free space permitivity, 𝐿 the junction thickness, and πœ‡ the carriers mobility. We then deduce the evolution of the differential resistance 𝑅𝑑=𝑑𝑉𝐿/𝑑𝐼𝐿:𝑅𝑑=12β‹…19πœ€πœ€0πœ‡/8𝐿3β‹…1√𝐼𝐿,SCLC.(2)

The typical evolution of the electrical and optical parameters is shown in Table 1.

tab1
Table 1: Evolution of the electrical and optical parameters.

We show that the static characteristics do not allow making difference between the aged laser and the reference laser. This difference can be made with electrical noise measurements.

4. Low-Frequency Noise Measurements

4.1. Noise Equivalent Circuit

In order to obtain a better analysis of the behavior of the devices studied, it is necessary to give the noise equivalent circuit of multimode laser diode (4 modes for this Pump laser) at low frequency (Figure 3).

841695.fig.003
Figure 3: Noise equivalent circuit of a multimode laser diode at low frequency.

This circuit is obtained by deriving the rate equations including Langevin white noise sources and 1/𝑓 noise sources describing in [6], and we are considering all other noise sources to be produced by the interfaces and the trapping defect density [7].

Where 𝑅 is a differential diode resistance, 𝑅sek is an additional resistance due to coupling of spontaneous emission into lasing mode for π‘˜ mode, 𝑣nek is a voltage noise source due to the fluctuation of the photon population, and 𝑖𝑛 is the current noise source due to the fluctuation of the electron population. The input signal is the modulation current 𝑖𝐿1 or the modulation voltage 𝑣1 for intrinsic circuit; 𝑆𝑉,𝑅𝑠=(𝛼𝐼𝐿/π‘“πœπ‘ )𝑅2𝑠 is the thermal noise due to series resistance 𝑅𝑠;𝑆𝑉,SCLC is the noise source due to space-charge-limited current effect.

4.2. Current Noise Spectral Density (CNSD)

We make a noise analysis by Fast Fourier Transform FFT measurements and very low-noise amplifier. The Current Noise Spectral Density (CNSD) 𝑆𝑖𝐿 represents the current intensity fluctuations at 20 Β± 0, 1Β°C. The CNSD has been measured over a wide frequency range from 1 Hz to 1 MHz; we give in Figure 4 a typical noise spectrum: 1/π‘“π‘š (1β‰€π‘šβ‰€2) decreases followed by flat noise level.

841695.fig.004
Figure 4: Current noise spectral density versus frequency.

Figure 5 exhibits the low-frequency current noise measured at 10 Hz, as a function of the laser current. We notice that the spectra are dominated by 1/𝑓 (flicker) noise due to the carrier mobility fluctuations given by TGM Kleinpenning’s model [8]; the CNSD varies as 𝐼2𝐿:𝑆𝐼𝐿I=𝛼H𝐼2𝐿𝑓𝑁,(3) with 𝛼H being Hooge parameter, 𝑁 being free carrier number, and 𝑓 being frequency.

841695.fig.005
Figure 5: Electrical noise spectral density 𝑆𝐼𝐿 at 10 Hz versus 𝐼𝐿.

In this case, we can calculate 𝛼H (Hooge parameter) at very weak current, 𝑓=10 Hz, 𝐼=1 nA, and we found [9] that𝛼H𝑆=𝑓⋅𝑖,1/𝑓𝐼2𝐿2π‘žπœ‡π‘…=8,5β‹…10βˆ’4,(4) where 𝐿𝑁=2π‘žπœ‡π‘…,(5)𝐿=1200 (ΞΌm) is the sample length, π‘ž=1,6β‹…10βˆ’19 (𝐢) is the elementary charge, πœ‡=11000 (cm2Vβˆ’1Β·Sβˆ’1 at 300 K for AlGaAs/InGaAs) is the carrier mobility, and 𝑅=108 Ω is the dynamic resistance. The 𝛼H value is in agreement with those given by Hooge for AlGaAs/InGaAs at 300 K [10].

Region II
At 10 Hz, the CNSD varies as 𝐼𝐿3/2, it can be explained by fluctuations of diffusion current, and, it is due to the traps placed near the n+nβˆ’ and p+pβˆ’ interfaces [4]. Then, 𝑆𝐼𝐿(10Hz)𝐼=𝐢(𝑁,𝐴)⋅𝐿3/2𝑓=πΌπΏπ‘‰π‘—π‘…πΏξ“π‘–π·π‘–πœπ‘–ξ€·1+πœ”2π‘–πœ2𝑖,(6) where 𝐢(𝑁,𝐴) is the coefficient that depends on the section and on the number of free carriers, 𝑅𝐿 is junction resistance of n+nβˆ’andp+pβˆ’ interfaces, 𝑉𝑗 is the applied voltage of junction, 𝐷𝑖 is a statistic factor, depending on the material, and πœπ‘– is the recombination time.
This noise is related to pinching of the space-charge-limited current SCLC effect superposed with the noise due to fluctuations of current in the MQW outside the space charge region [11].

Region III
At 10 Hz, we observe saturation of CNSD, the CNSD as predicted by Vandamme and Ruyven, when the laser current is lower than the threshold current 𝐼th [12], because series resistance 𝑅𝑠, in this region, is not neglected in comparison with differential resistance 𝑅𝑑 [13].

Regions IV and V
The CNSD increases at 10 Hz, due to the optical gain fluctuations in the active layer related to increase of number of photons around threshold [14, 15]. In this case modeling is given by 𝑆𝑖𝑑,1/𝑓=2⋅𝑍2βˆ‘4π‘˜=1βˆ‘4𝑙=2ξ€·π‘†π‘‰π‘›π‘˜,𝑉𝑛𝑙/𝑅2Sek𝑍+𝑅𝐿+𝑅𝑠2+𝑅2π‘ ξ€·π‘žπ›ΌπΌπΏ/π‘“πœπ‘ ξ€Έ+π‘…πΏπΌπΏπ‘‰π‘—βˆ‘π‘–ξ€·π·π‘–πœπ‘–/ξ€·1+πœ”2π‘–πœ2𝑖𝑍+𝑅𝐿+𝑅𝑠2,(7) where 𝑍 is the equivalent impedance of intrinsic circuit, π‘†π‘‰π‘›π‘˜,𝑉𝑛𝑙 is the noise source giving an excess noise due to longitudinal mode hopping which is related to output power fluctuations (exchange of power between two voltage noise sources due to the fluctuation of the photon population), πœπ‘– is related to trap noise generators placed in the intrinsic layer and near n+nβˆ’ and p+pβˆ’ interfaces which absorb many photons in the aged active layer, and the end term of (7), in region V, becomes dominant.

Region V
At 10 Hz, the level of noise shows also that a proportionality of about 𝑆𝑖10Hz∝𝐼3/2 originates to the traps in the vicinity of the nβˆ’n+ and pβˆ’p+ related to SCLC effect.
The CNSD in the aged laser is higher than that in the fresh laser; it is due to active layer degradation due to decrease of recombination time πœπ‘–.

5. Summary

The study of the electrical noise that represents the fluctuations of current at low frequency is very significant of degradation of the active layer. The spectra are dominated by conventional 1/𝑓 (flicker) noise at weak current and the CNSD at 10 Hz is dominated by 𝐼3/2. Pinching of the Space Charge shows limited current SCLC effect.

The defect is associated with carrier transport controlled by the n+nβˆ’ and p+pβˆ’ interfaces and the trapping defect density. An excess electrical noise due to longitudinal mode hopping is related with output optical fluctuations at low frequency. The CNSD in the aged laser is higher than that in the fresh laser, certainly due to the degradation of recombination time πœπ‘–.

References

  1. M. Bettiati, C. Starck, M. Pommies et al., β€œGradual degradation in 980 nm InGaAs/AlGaAs pump lasers,” Materials Science and Engineering B, vol. 91-92, pp. 486–490, 2002. View at Publisher Β· View at Google Scholar Β· View at Scopus
  2. B. Orsal, J. M. Peransin, P. Signoret, and K. Daulasim, β€œLow frequency noise of a 980 nm InGa-As/GaAs strained quantum well laser,” Journal de Physique III, pp. 1739–1749, 1993.
  3. I. Asaad, B. Orsal, J. P. Perez et al., β€œCharacterizations of 980 nm aged pump laser by using electrical and optical noise,” in Proceedings of the 17th International Conference on Noise and Fluctuations (ICNF '03), p. 409, Prague, Czech Republic, August 2003.
  4. P. Balco, J. M. Peransin, B. Orsal , and Th. Ducourant, β€œTempereture dependence of noise characteristcs in the PIN hydrogenated amorphous silicon switching diodes,” in Proceedings of the 14th International Conference on Noise and Fluctuations (ICNF '97), Photonics West, leuven, Belgium, 1997.
  5. E. von Hauff, J. Parisi, and V. Dyakonov, β€œField effect measurements on charge carrier mobilities in various polymer-fullerene blend compositions,” Thin Solid Films, vol. 511-512, pp. 506–511, 2006. View at Publisher Β· View at Google Scholar Β· View at Scopus
  6. B. Orsal, P. Signoret, J. M. Peransin, K. Daulasim, and R. Alabedra, β€œCorrelation between electrical and optical photocurrent noises in semiconductor laser diodes,” IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 2151–2161, 1994. View at Publisher Β· View at Google Scholar Β· View at Scopus
  7. C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, β€œNoise equivalent circuit of a semiconductor laser diode,” IEEE Journal of Quantum Electronics, vol. QE-18, no. 3, pp. 333–337, 1982. View at Scopus
  8. T. G. M. Kleipenning, β€œ1/f noise in pn junction diodes,” Journal of Vacuum Science & Technology A, vol. 3, no. 1, pp. 185–191, 1985.
  9. F. N. Hooge, β€œ1/f noise in semiconductor materials,” in Proceedings of the 18th International Conference on Noise in Physical Systems and 1/f Fluctuations, V. Bareikis and R. Katilius, Eds., pp. 8–13, Lithuania, Palanga, 1995.
  10. L. K. J. Vandamme, S. Kibeya, B. Orsal, and R. Alabedra, β€œ1/f noise and thermal noise of As/Al0.4Ga0.6As superlattice,” in Proceedings of the International Conference on Noise in Physics Systems and 1/f Fluctuations, pp. 324–328, American Institute of Physics, New York, NY, USA, 1993.
  11. S. Kibeya, B. Orsal, R. Alabedra, and L. K. J. Vandamme, β€œNoise in superlatice avalanche photo-diodes,” in Proceedings of the International Conference on Noise in Physics Systems and 1/f Fluctuations, pp. 325–329, Kyoto, Japan, November 1991.
  12. L. K. J. Vandamme and L. J. V. Ruyven, β€œ1/f noise used as reliability test for laser diode,” in Proceedings of the International Conference on Noise in Physical Systems and 1/f Fluctuations, pp. 245–247, NewYork, NY, USA, 1983.
  13. B. Orsal, P. Signoret, J. M. Peransin, K. Daulasim, and R. Alabedra, β€œCorrelation between electrical and optical photocurrent noises in semiconductor laser diodes,” IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 2151–2161, 1994. View at Publisher Β· View at Google Scholar Β· View at Scopus
  14. R. J. Fronen and L. K. J. Vandamme, β€œ“Low frequency intensity noise in semicoductor laser,” IEEE Journal of Quantum Electronics, vol. 24, no. 5, pp. 724–736, 1988. View at Publisher Β· View at Google Scholar Β· View at Scopus
  15. Y. Zhu, E. Cabrera-Granado, O. G. Calderon et al., β€œCompetition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” Journal of Optics, vol. 12, no. 10, Article ID 104019, 2010. View at Publisher Β· View at Google Scholar Β· View at Scopus