About this Journal Submit a Manuscript Table of Contents
ISRN Thermodynamics
Volume 2012 (2012), Article ID 850957, 7 pages
http://dx.doi.org/10.5402/2012/850957
Review Article

Threads of Time

1Department of Physics, University of Helsinki, 00014 Helsinki, Finland
2Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
3Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
4Department of Biological Sciences, Binghamton University, Binghamton, NY 13754, USA

Received 29 March 2012; Accepted 20 May 2012

Academic Editors: I. Haque and H. Hirao

Copyright © 2012 Arto Annila and Stanley Salthe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Barbour, The End of Time: The Next Revolution in Our Understanding of the Universe, Oxford University Press, New York, NY, USA, 1999.
  2. E. Noether, “Invariante variationsprobleme,” Nachrichten Von Der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 235–257, 1918.
  3. P.-L. M. de Maupertuis, “Accord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles,” Memoires de I'Academie Royale des Sciences (Paris), pp. 417–426.
  4. J. T. Fraser, F. C. Haber, and G. H. Müller, Eds., The Study of Time, Springer, Berlin, Germany, 1972.
  5. H. D. Zeh, Physical Basis of the Direction of Time, Springer, Berlin, Germany, 2007.
  6. J. J. Halliwell, J. Pérez-Mercader, and W. H. Zurek, Eds., The Physical Origins of Time Asymmetry, Cambridge University Press, New York, NY, USA, 1994.
  7. H. Price, Time’s Arrow and Archimedes' Point: New Directions for the Physics of Time, Oxford University Press, New York, NY, USA, 1996.
  8. E. du Châtelet, Institutions de Physique, Prault, Paris, France, 1740.
  9. A. Annila, “All in action,” Entropy, vol. 12, pp. 2333–2358, 2010.
  10. S. N. Salthe, Evolving Hierarchical Systems: Their Structure and Representation, Columbia University Press, New York, NY, USA, 1985.
  11. S. N. Salthe, “The natural philosophy of work,” Entropy, vol. 9, no. 2, pp. 83–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. E. J. Wollack, Wilkinson Microwave Anisotropy Probe, 2011, http://wmap.gsfc.nasa.gov/universe/WMAP_Universe.pdf.
  13. S. M. Carroll, “The cosmological constant,” Living Reviews in Relativity, vol. 3, pp. 1–56, 2001.
  14. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society A, vol. 392, pp. 45–57, 1984.
  15. G. W. Leibniz, Philosophical Papers and Letters, Reidel, Dordrecht, The Netherlands, 2nd edition, 1969, L. E. Loemker, Ed. and Translation.
  16. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, NY, USA, 1992.
  17. P. Tuisku, T. K. Pernu, and A. Annila, “In the light of time,” Proceedings of the Royal Society A, vol. 465, no. 2104, pp. 1173–1198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Bocchieri and A. Loinger, “Quantum recurrence theorem,” Physical Review, vol. 107, no. 2, pp. 337–338, 1957. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Einstein, “ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik, vol. 17, pp. 132–148, 1905.
  20. D. Hume, Treatise of Human Nature, Oxford University Press, London, UK, 1968, L. A. Selby-Bigge, Ed.
  21. C. J. Ducasse, “On the nature and the observability of the causal relation,” Journal of Philosophy, vol. 23, pp. 57–68, 1926.
  22. E. Sosa, Ed., Causation and Conditionals, Oxford University Press, London, UK, 1975.
  23. H. Weyl, Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton, NJ, USA, 1949.
  24. W. V. Quine, Roots of Reference, Open Court, La Salle, France, 1973.
  25. D. Fair, “Causation and the flow of energy,” Erkenntnis, vol. 14, no. 3, pp. 219–250, 1979. View at Publisher · View at Google Scholar · View at Scopus
  26. S. N. Salthe, Development and Evolution: Complexity and Change in Biology, MIT Press, Cambridge, Mass, USA, 1993.
  27. I. Newton, Philosophiæ Naturalis Principia Mathematica, Macmillan, New York, NY, USA, 1687, Translated by: A. Motte, D. Adee, 1846.
  28. V. R. I. Kaila and A. Annila, “Natural selection for least action,” Proceedings of the Royal Society A, vol. 464, no. 2099, pp. 3055–3070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Dellian, Newton Rediscovered: On Absolute Time and Relative Times, Translation of Philosophiæ Naturalis Principia Mathematica, in the Scholium after Definitio 8, 1687, http://www.neutonus-reformatus.com/frameset.html.
  30. L. G. Gouy, “Sur l’energie utilizable,” Journal de Physique, vol. 8, pp. 501–518, 1889.
  31. A. Stodola, Steam and Gas Turbines, McGraw-Hill, New York, NY, USA, 1910.
  32. S. Kullback, Information Theory and Statistics, John Wiley & Sons, New York, NY, USA, 1959.
  33. J. Dyke and A. Kleidon, “The maximum entropy production principle: its theoretical foundations and applications to the earth system,” Entropy, vol. 12, no. 3, pp. 613–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. M. Martyushev, “The maximum entropy production principle: two basic questions,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1545, pp. 1333–1334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Sharma and A. Annila, “Natural process—natural selection,” Biophysical Chemistry, vol. 127, no. 1-2, pp. 123–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Annila, “The 2nd law of thermodynamics delineates dispersal of energy,” International Reviews in Physical, vol. 4, pp. 29–34, 2010.
  37. M. Gell-Mann and J. B. Hartle, “Time symmetry and asymmetry in quantum mechanics and quantum cosmology,” in Proceedings of the 1st International A. D. Sakharov Conference on Physics, L. V. Keldysh and V. Y. Fainberg, Eds., USSR, Nova Science, Moscow, Russia, May 1992.
  38. D. N. Page, “No time asymmetry from quantum mechanics,” Physical Review Letters, vol. 70, no. 26, pp. 4034–4037, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Annila and T. Kallio-Tamminen, “Tangled in entanglements,” http://arxiv.org/abs/1006.0463.
  40. H. Poincaré, “Sur le probléme des trois corps et les équations de la dynamique,” Acta Mathematica, vol. 13, no. 1, pp. A3–A270, 1890. View at Publisher · View at Google Scholar · View at Scopus
  41. D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Problem: A Computational Study, Princeton University Press, Princeton, NJ, USA, 2006.
  42. V. Sharma, V. R. I. Kaila, and A. Annila, “Protein folding as an evolutionary process,” Physica A, vol. 388, no. 6, pp. 851–862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Annila, “Physical portrayal of computational complexity,” ISRN Computational Mathematics, vol. 2012, Article ID 321372, 15 pages, 2012. View at Publisher · View at Google Scholar
  44. J. C. Kapteyn, Skew Frequency Curves in Biology and Statistics, Noordhoff, Astronomical Laboratory, Groningen, The Netherlands, 1903.
  45. J. H. Gaddum, “Lognormal distributions,” Nature, vol. 156, no. 3964, pp. 463–466, 1945. View at Scopus
  46. E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across the sciences: keys and clues,” BioScience, vol. 51, no. 5, pp. 341–352, 2001. View at Scopus
  47. T. Grönholm and A. Annila, “Natural distribution,” Mathematical Biosciences, vol. 210, no. 2, pp. 659–667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Mäkelä and A. Annila, “Natural patterns of energy dispersal,” Physics of Life Reviews, vol. 7, no. 4, pp. 477–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Krüger, T. Sturm, W. Carl, and L. Daston, Why Does History Matter to Philosophy and the Sciences?: Selected Essays, Walter de Gruyter, Berlin, Germany, 2005.
  50. R. Dewar, “Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states,” Journal of Physics A, vol. 36, no. 3, pp. 631–641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. P. F. Verhulst, “Recherches mathématiques sur la loi d’accroissement de la population,” Nouvelle Mémoires de l'Académie Impériale et Royale des Sciences et Belles Lettres de Bruxelles, vol. 18, pp. 1–38, 1845.
  52. A. Annila and S. Salthe, “Physical foundations of evolutionary theory,” Journal of Non-Equilibrium Thermodynamics, vol. 35, no. 3, pp. 301–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Annila, “Least-time paths of light,” MNRAS, vol. 416, pp. 2944–2948, 2011.
  54. M. Koskela and A. Annila, “Least-time perihelion precession,” MNRAS, vol. 417, pp. 1742–1746, 2011.
  55. L. Boltzmann, Populäre Schriften, Barth, Leipzig, Germany, 1905, Partially Translation: Theoretical physics and philosophical problems by B. McGuinness, Reidel, Dordrecht, The Netherlands, 1974.
  56. T. K. Pernu and A. Annila, “Natural emergence,” Complexity, vol. 17, pp. 44–47, 2012.
  57. B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” Journal of Mathematical Physics, vol. 18, no. 4, pp. 756–763, 1976. View at Scopus
  58. D. Home and M. A. B. Whitaker, “A conceptual analysis of quantum zeno; paradox, measurement, and experiment,” Annals of Physics, vol. 258, no. 2, pp. 237–285, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. E. J. Chaisson, Cosmic Evolution: The Rise of Complexity in Nature, Harvard University Press, Cambridge, Mass, USA, 2001.
  60. D. R. Brooks and E. O. Wiley, Evolution as Entropy: Toward a Unified Theory of Biology, University of Chicago Press, Chicago, Ill, USA, 1988.
  61. E. D. Schneider and J. J. Kay, “Life as a manifestation of the second law of thermodynamics,” Mathematical and Computer Modelling, vol. 19, no. 6–8, pp. 25–48, 1994. View at Scopus
  62. C. H. Lineweaver, “Cosmological and biological reproducibility: limits of the maximum entropy production principle,” in Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, A. Kleidon and R. D. Lorenz, Ed., Springer, Heidelberg, Germany, 2005.
  63. A. Annila and E. Annila, “Why did life emerge?” International Journal of Astrobiology, vol. 7, no. 3-4, pp. 293–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Annila and S. Salthe, “Economies evolve by energy dispersal,” Entropy, vol. 11, no. 4, pp. 606–633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Annila and S. Salthe, “Cultural naturalism,” Entropy, vol. 12, no. 6, pp. 1325–1343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Karnani, K. Pääkönen, and A. Annila, “The physical character of information,” Proceedings of the Royal Society A, vol. 465, no. 2107, pp. 2155–2175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Anttila and A. Annila, “Natural games,” Physics Letters A, vol. 375, pp. 3755–3761, 2011.