About this Journal Submit a Manuscript Table of Contents
ISRN Hematology
Volume 2012 (2012), Article ID 875357, 5 pages
http://dx.doi.org/10.5402/2012/875357
Research Article

K3EDTA Vacuum Tubes Validation for Routine Hematological Testing

1Laboratory of Clinical Biochemistry, Department of Life and Reproduction Sciences, University of Verona, 37129 Verona, Italy
2Post-Graduate Program of Pharmaceutical Sciences, Department of Medical Pathology Federal University of Parana, 80210-170 Curitiba, PR, Brazil
3MERCOSUL: Sector Committee of Clinical Analyses and In Vitro Diagnostics–CSM 20, 20270-902 Rio de Janeiro, RJ, Brazil
4Brazilian Society of Clinical Analyses on Sao Paulo State, 02965-140 Sao Paulo, SP, Brazil
5Laboratory of Clinical Chemistry and Hematology, Department of Pathology and Laboratory Medicine, Academic Hospital of Parma, 43126 Parma, Italy

Received 16 April 2012; Accepted 10 June 2012

Academic Editors: D. Lavelle, W. Lösche, and C. Martinez

Copyright © 2012 Gabriel Lima-Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Lima-Oliveira, G. Lippi, G. L. Salvagno et al., “Transillumination: a new tool to eliminate the impact of venous stasis during the procedure for the collection of diagnostic blood specimens for routine haematological testing,” International Journal of Laboratory Hematology, vol. 33, pp. 457–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Lima-Oliveira, G. L. Salvagno, G. Lippi et al., “Elimination of the venous stasis error for routine coagulation testing by transillumination,” Clinica Chimica Acta, vol. 412, no. 15-16, pp. 1482–1484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Lima-Oliveira, G. Lippi, G. L. Salvagno et al., “New ways to deal with known preanalytical issues: use of transilluminator instead of tourniquet for easing vein access and eliminating stasis on clinical biochemistry,” Biochemia Medica, vol. 21, no. 2, pp. 152–159, 2011. View at Scopus
  4. G. De Souza Lima-Oliveira, G. Picheth, N. M. Sumita, and M. Scartezini, “Quality control in the collection of diagnostic blood specimens: illuminating a dark phase of preanalytical errors,” Jornal Brasileiro de Patologia e Medicina Laboratorial, vol. 45, no. 6, pp. 441–447, 2009. View at Scopus
  5. J. Rushing, “Drawing blood with vacuum tubes,” Nursing, vol. 34, no. 1, p. 26, 2004. View at Scopus
  6. G. Lippi, G. L. Salvagno, M. Montagnana, G. Lima-Oliveira, G. C. Guidi, and E. J. Favaloro, “Quality standards for sample collection in coagulation testing,” Seminars in Thrombosis & Hemostasis. In press. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Stankovic, J. Silvestri, M. Malis, and C. Najork, “Total quality in laboratory diagnostics: the role of commercial companies,” Biochemia Medica, vol. 20, no. 2, pp. 207–214, 2010. View at Scopus
  8. ISO, Medical Laboratories—Particular Requirements for Quality and Competence, ISO 15189, 2nd edition, 2007.
  9. G. Lima-Oliveira, G. Lippi, G. L. Salvagno, M. Montagnana, G. Picheth, and G. C. Guidi, “Different manufacturers of syringes: a new source of variability in blood gas, acid-base balance and related laboratory test?” Clinical Biochemistry, vol. 45, no. 9, pp. 683–687, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Lima-Oliveira, G. Lippi, G. L. Salvagno, M. Montagnana, G. Picheth, and G. C. Guidi, “Pre analytical management: serum vaccum tubes validation for routine clinical chemistry,” Biochemia Medica, vol. 22, pp. 180–186, 2012.
  11. Clinical and Laboratory Standards Institute (CLSI), Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture, CLSI H3-A6 document, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 6th edition, 2007.
  12. W. G. Guder, S. Narayanan, H. Wisser, and B. Zawta, Diagnostic Samples: from the Patient to the Laboratory: the Impact of Preanalytical Variables on the Quality of Laboratory Results, Wiley-Blackwell, 4th edition, 2009.
  13. N. Harris, J. M. Jou, G. Devoto et al., “Performance evaluation of the ADVIA 2120 hematology analyzer: an international multicenter clinical trial,” Laboratory Hematology, vol. 11, no. 1, pp. 62–70, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. B. D'Agostino, Tests for Normal Distribution, Goodness-Of-Fit Techniques, Macel Decker, 1986.
  15. C. Ricós, V. Alvarez, F. Cava et al., “Current databases on biological variation: Pros, cons and progress,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 59, no. 7, pp. 491–500, 1999. View at Scopus
  16. P. Bonini, M. Plebani, F. Ceriotti, and F. Rubboli, “Errors in laboratory medicine,” Clinical Chemistry, vol. 48, no. 5, pp. 691–698, 2002. View at Scopus
  17. P. Carraro and M. Plebani, “Errors in a stat laboratory: types and frequencies 10 years later,” Clinical Chemistry, vol. 53, no. 7, pp. 1338–1342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Plebani and P. Carraro, “Mistakes in a stat laboratory: types and frequency,” Clinical Chemistry, vol. 43, no. 8, pp. 1348–1351, 1997. View at Scopus
  19. G. Lippi, G. L. Salvagno, M. Montagnana, M. Franchini, and G. C. Guidi, “Phlebotomy issues and quality improvement in results of laboratory testing,” Clinical Laboratory, vol. 52, no. 5-6, pp. 217–230, 2006. View at Scopus
  20. G. Lippi, G. L. Salvagno, G. Brocco, and G. C. Guidi, “Preanalytical variability in laboratory testing: influence of the blood drawing technique,” Clinical Chemistry and Laboratory Medicine, vol. 43, no. 3, pp. 319–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Lippi and G. C. Guidi, “Risk management in the preanalytical phase of laboratory testing,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 6, pp. 720–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Lippi and G. C. Guidi, “Preanalytic indicators of laboratory performances and quality improvement of laboratory testing,” Clinical Laboratory, vol. 52, no. 9-10, pp. 457–462, 2006. View at Scopus
  23. G. Lippi, R. Fostini, and G. C. Guidi, “Quality improvement in laboratory medicine: extra-analytical issues,” Clinics in Laboratory Medicine, vol. 28, no. 2, pp. 285–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Lippi, A. Bassi, G. Brocco, M. Montagnana, G. L. Salvagno, and G. C. Guidi, “Preanalytic error tracking in a Laboratory Medicine Department: results of a 1-year experience,” Clinical Chemistry, vol. 52, no. 7, pp. 1442–1443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Lippi, G. Lima-Oliveira, S. C. Nazer et al., “Suitability of a transport box for blood sample shipment over a long period,” Clinical Biochemistry, vol. 44, no. 12, pp. 1028–1029, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Clinical and Laboratory Standards Institute (CLSI), Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture, CLSI H3-A5 document, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 5th edition, 2003.
  27. S. Tsiara, M. Elisaf, I. A. Jagroop, and D. P. Mikhailidis, “Platelets as predictors of vascular risk: is there a practical index of platelet activity?” Clinical and Applied Thrombosis/Hemostasis, vol. 9, no. 3, pp. 177–190, 2003. View at Scopus
  28. I. A. Jagroop, I. Clatworthy, J. Lewin, and D. P. Mikhailidis, “Shape change in human platelets: measurement with a channelyzer and visualisation by electron microscopy,” Platelets, vol. 11, no. 1, pp. 28–32, 2000. View at Scopus
  29. Y. Park, N. Schoene, and W. Harris, “Mean platelet volume as an indicator of platelet activation: methodological issues,” Platelets, vol. 13, no. 5-6, pp. 301–306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Y. Gasparyan, L. Ayvazyan, D. P. Mikhailidis, and G. D. Kitas, “Mean platelet volume: a link between thrombosis and inflammation?” Current Pharmaceutical Design, vol. 17, no. 1, pp. 47–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Vagdatli, E. Gounari, E. Lazaridou, E. Katsibourlia, F. Tsikopoulou, and I. Labrianou, “Platelet distribution width: a simple, practical and specific marker of activation of coagulation,” Hippokratia, vol. 14, no. 1, pp. 28–32, 2010. View at Scopus
  32. L. Vizioli, S. Muscari, and A. Muscari, “The relationship of mean platelet volume with the risk and prognosis of cardiovascular diseases,” International Journal of Clinical Practice, vol. 63, no. 10, pp. 1509–1515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Papanas, G. Symeonidis, E. Maltezos et al., “Mean platelet volume in patients with type 2 diabetes mellitus,” Platelets, vol. 15, no. 8, pp. 475–478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Hekimsoy, B. Payzin, T. Örnek, and G. Kandogan, “Mean platelet volume in Type 2 diabetic patients,” Journal of Diabetes and its Complications, vol. 18, no. 3, pp. 173–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Papanas, G. Mavridis, E. Karavageli, G. Symeonidis, and E. Maltezos, “Peripheral neuropathy is associated with increased mean platelet volume in type 2 diabetic patients,” Platelets, vol. 16, no. 8, pp. 498–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Demirtunc, D. Duman, M. Basar, M. Bilgi, M. Teomete, and T. Garip, “The relationship between glycemic control and platelet activity in type 2 diabetes mellitus,” Journal of Diabetes and its Complications, vol. 23, no. 2, pp. 89–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Jindal, S. Gupta, R. Gupta et al., “Platelet indices in diabetes mellitus: indicators of diabetic microvascular complications,” Hematology, vol. 16, no. 2, pp. 86–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Strauß, C. Vollert, A. von Stackelberg, A. Weimann, G. Gaedicke, and H. Schulze, “Immature platelet count: a simple parameter for distinguishing thrombocytopenia in pediatric acute lymphocytic leukemia from immune thrombocytopenia,” Pediatric Blood and Cancer, vol. 57, no. 4, pp. 641–647, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Nena, N. Papanas, P. Steiropoulos, et al., “Mean platelet volume and platelet distribution width in non-diabetic subjects with obstructive sleep apnoea syndrome: new indices of severity?” Platelets. In press. View at Publisher · View at Google Scholar
  40. B. A. Jones, F. Meier, and P. J. Howanitz, “Complete blood count specimen acceptability: a College of American Pathologists Q-Probes study of 703 laboratories,” Archives of Pathology and Laboratory Medicine, vol. 119, no. 3, pp. 203–208, 1995. View at Scopus
  41. C. Briggs, I. Mellors, A. Roderick et al., “Quality counts: new parameters in blood cell counting,” International Journal of Laboratory Hematology, vol. 31, no. 3, pp. 277–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Lippi, G. Lima-Oliveira, G. L. Salvagno et al., “Influence of a light meal on routine haematological tests,” Blood Transfusion, vol. 8, no. 2, pp. 94–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Sears, S. Charache, and M. Perlstein, “Electronic blood cell counters. Faulty calibration due to type and amount of anticoagulant in collection tubes,” Archives of Pathology and Laboratory Medicine, vol. 109, no. 3, pp. 247–249, 1985. View at Scopus