About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2012 (2012), Article ID 876203, 5 pages
http://dx.doi.org/10.5402/2012/876203
Review Article

The Role of Granulysin in Cancer Immunology

Department of Internal Medicine, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa 272-8513, Japan

Received 4 August 2011; Accepted 2 October 2011

Academic Editors: B. Stijlemans and A. B. Van Spriel

Copyright © 2012 Satoshi Okada and Tetsuo Morishita. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Russell and T. J. Ley, “Lymphocyte-mediated cytotoxicity,” Annual Review of Immunology, vol. 20, pp. 323–370, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. Kagi, B. Ledermann, K. Burki et al., “Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice,” Nature, vol. 369, no. 6475, pp. 31–37, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. Balkow, A. Kersten, T. T. T. Tran et al., “Concerted action of the FasL/Fas and perforin/granzyme A and B pathways is mandatory for the development of early viral hepatitis but not for recovery from viral infection,” Journal of Virology, vol. 75, no. 18, pp. 8781–8791, 2001. View at Publisher · View at Google Scholar
  4. C. Clayberger and A. M. Krensky, “Granulysin,” Current Opinion in Immunology, vol. 15, no. 5, pp. 560–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Stenger, D. A. Hanson, R. Teitelbaum et al., “An antimicrobial activity of cytolytic T cells mediated by granulysin,” Science, vol. 282, no. 5386, pp. 121–125, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Stenger, J. P. Rosat, B. R. Bloom, A. M. Krensky, and R. L. Modlin, “Granulysin: a lethal weapon of cytolytic T cells,” Immunology Today, vol. 20, no. 9, pp. 390–394, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. S. V. Peña, D. A. Hanson, B. A. Carr, T. J. Goralski, and A. M. Krensky, “Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins,” The Journal of Immunology, vol. 158, no. 6, pp. 2680–2688, 1997. View at Scopus
  8. W. C. Manning, S. O'Farrell, T. J. Goralski, and A. M. Krensky, “Genomic structure and alternative splicing of 519, a gene expressed late after T cell activation,” The Journal of Immunology, vol. 148, no. 12, pp. 4036–4042, 1992. View at Scopus
  9. D. A. Hanson, A. A. Kaspar, F. R. Poulain, and A. M. Krensky, “Biosynthesis of granulysin, a novel cytolytic molecule,” Molecular Immunology, vol. 36, no. 7, pp. 413–422, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Jongstra, T. J. Schall, and B. J. Dyer, “The isolation and sequence of a novel gene from a human functional T cell line,” The Journal of Experimental Medicine, vol. 165, no. 3, pp. 601–614, 1987.
  11. L. Mincheva-Nilsson, O. Nagaeva, K. G. Sundqvist, M. L. Hammarström, S. Hammarström, and V. Baranov, “γδ T cells of human early pregnancy decidua: evidence for cytotoxic potency,” International Immunology, vol. 12, no. 5, pp. 585–596, 2000. View at Scopus
  12. F. M. Spada, E. P. Grant, P. J. Peters et al., “Self-recognition of CD1 by γ/δ T cells: implications for innate immunity,” The Journal of Experimental Medicine, vol. 191, no. 6, pp. 937–948, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Dieli, M. Troye-Blomberg, J. Ivanyi et al., “Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by V-γ9/Vδ2 T lymphocytes,” Journal of Infectious Diseases, vol. 184, no. 8, pp. 1082–1085, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. L. Gansert, V. Kießler, M. Engele et al., “Human NKT cells express granulysin and exhibit antimycobacterial activity,” The Journal of Immunology, vol. 170, no. 6, pp. 3154–3161, 2003. View at Scopus
  15. R. S. Munford, P. O. Sheppard, and P. J. O'Hara, “Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure,” Journal of Lipid Research, vol. 36, no. 8, pp. 1653–1663, 1995. View at Scopus
  16. D. H. Anderson, M. R. Sawaya, D. Cascio et al., “Granulysin crystal structure and a structure-derived lytic mechanism,” Journal of Molecular Biology, vol. 325, no. 2, pp. 355–365, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Andersson, H. Gunne, B. Agerberth et al., “NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity,” The EMBO Journal, vol. 14, no. 8, pp. 1615–1625, 1995. View at Scopus
  18. J. J. Endsley, J. L. Furrer, M. A. Endsley et al., “Characterization of bovine homologues of granulysin and NK-lysin,” The Journal of Immunology, vol. 173, no. 4, pp. 2607–2614, 2004. View at Scopus
  19. E. G. Davis, Y. Sang, B. Rush, G. Zhang, and F. Blecha, “Molecular cloning and characterization of equine NK-lysin,” Veterinary Immunology and Immunopathology, vol. 105, no. 1-2, pp. 163–169, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. W. Heusel, R. L. Wesselschmidt, S. Shresta, J. H. Russell, and T. J. Ley, “Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells,” Cell, vol. 76, no. 6, pp. 977–987, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Gamen, D. A. Hanson, A. Kaspar, J. Naval, A. M. Krensky, and A. Anel, “Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways,” The Journal of Immunology, vol. 161, no. 4, pp. 1758–1764, 1998. View at Scopus
  22. A. A. Kaspar, S. Okada, J. Kumar et al., “A distinct pathway of cell-mediated apoptosis initiated by Granulysin,” The Journal of Immunology, vol. 167, no. 1, pp. 350–356, 2001. View at Scopus
  23. J. Pardo, P. Pérez-Galán, S. Gamen et al., “A role of the mitochondrial apoptosis-inducing factor in granulysin-induced apoptosis,” The Journal of Immunology, vol. 167, no. 3, pp. 1222–1229, 2001.
  24. S. Okada, Q. Li, J. C. Whitin, C. Clayberger, and A. M. Krensky, “Intracellular mediators of granulysin-induced cell death,” The Journal of Immunology, vol. 171, no. 5, pp. 2556–2562, 2003. View at Scopus
  25. F. A. X. Schanne, A. B. Kane, E. E. Young, and F. L. Farber, “Calcium dependence of toxic cell death: a final common pathway,” Science, vol. 206, no. 4419, pp. 700–702, 1979. View at Scopus
  26. I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, “A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V,” Journal of Immunological Methods, vol. 184, no. 1, pp. 39–51, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Repp, H. Nieper, H. J. Draheim, A. Koschinski, H. Müller, and F. Dreyer, “Infectious bursal disease virus changes the potassium current properties of chicken embryo fibroblasts,” Virology, vol. 246, no. 2, pp. 362–369, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. F. M. Hughes Jr. and J. A. Cidlowski, “Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo,” Advances in Enzyme Regulation, vol. 39, pp. 157–171, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Barry and R. C. Bleackley, “Cytotoxic T lymphocytes: all roads lead to death,” Nature Reviews Immunology, vol. 2, no. 6, pp. 401–409, 2002. View at Scopus
  30. K. M. Edwards, C. M. Kam, J. C. Powers, and J. A. Trapani, “The human cytotoxic T cell granule serine protease granzyme H has chymotrypsin-like (chymase) activity and is taken up into cytoplasmic vesicles reminiscent of granzyme B-containing endosomes,” Journal of Biological Chemistry, vol. 274, no. 43, pp. 30468–30473, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. C. J. Froelich, K. Orth, J. Turbov et al., “New paradigm for lymphocyte granule-mediated cytotoxicity: target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29073–29079, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. D. A. Jans, L. J. Briggs, P. Jans et al., “Nuclear targeting of the serine protease granzyme A (fragmentin-1),” Journal of Cell Science, vol. 111, no. 17, pp. 2645–2654, 1998. View at Scopus
  33. M. J. Pinkoski, M. Hobman, J. A. Heibein et al., “Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis,” Blood, vol. 92, no. 3, pp. 1044–1054, 1998. View at Scopus
  34. L. Shi, S. Mai, S. Israels, K. Browne, J. A. Trapani, and A. H. Greenberg, “Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization,” The Journal of Experimental Medicine, vol. 185, no. 5, pp. 855–866, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. D. H. Canaday, R. J. Wilkinson, Q. Li, C. V. Harding, R. F. Silver, and W. H. Boom, “CD4+ and CD8+ T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism,” The Journal of Immunology, vol. 167, no. 5, pp. 2734–2742, 2001. View at Scopus
  36. R. V. Saini, C. Wilson, M. W. Finn, T. Wang, A. M. Krensky, and C. Clayberger, “Granulysin delivered by cytotoxic cells damages endoplasmic reticulum and activates caspase-7 in target cells,” The Journal of Immunology, vol. 186, no. 6, pp. 3497–3504, 2011. View at Publisher · View at Google Scholar · View at PubMed
  37. Z. Wang, E. Choice, A. Kaspar et al., “Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin,” The Journal of Immunology, vol. 165, no. 3, pp. 1486–1490, 2000. View at Scopus
  38. W. H. Chung, S. I. Hung, J. Y. Yang et al., “Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis,” Nature Medicine, vol. 14, no. 12, pp. 1343–1350, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. Deng, S. Chen, Q. Li, S. C. Lyu, C. Clayberger, and A. M. Krensky, “Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator,” The Journal of Immunology, vol. 174, no. 9, pp. 5243–5248, 2005. View at Scopus
  40. P. Tewary, D. Yang, G. De La Rosa et al., “Granulysin activates antigen-presenting cells through TLR4 and acts as an immune alarmin,” Blood, vol. 116, no. 18, pp. 3465–3474, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. C. J. Turtle and D. N. J. Hart, “Dendritic cell biology and application for tumour immunotherapy,” Cancer Forum, vol. 26, no. 2, pp. 109–112, 2002. View at Scopus
  42. J. A. López and D. N. J. Hart, “Current issues in dendritic cell cancer immunotherapy,” Current Opinion in Molecular Therapeutics, vol. 4, no. 1, pp. 54–63, 2002. View at Scopus
  43. L. P. Huang, S. C. Lyu, C. Clayberger, and A. M. Krensky, “Granulysin-mediated tumor rejection in transgenic mice,” The Journal of Immunology, vol. 178, no. 1, pp. 77–84, 2007. View at Scopus
  44. H. Ohtani, “Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer.,” Cancer Immunity, vol. 7, p. 4, 2007. View at Scopus
  45. F. Pagès, A. Berger, M. Camus et al., “Effector memory T cells, early metastasis, and survival in colorectal cancer,” The New England Journal of Medicine, vol. 353, no. 25, pp. 2654–2666, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Kishi, Y. Takamori, K. Ogawa et al., “Differential expression of granulysin and perforin by NK cells in cancer patients and correlation of impaired granulysin expression with progression of cancer,” Cancer Immunology, Immunotherapy, vol. 50, no. 11, pp. 604–614, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. S. Saigusa, T. Ichikura, H. Tsujimoto et al., “Serum granulysin level as a novel prognostic marker in patients with gastric carcinoma,” Journal of Gastroenterology and Hepatology, vol. 22, no. 8, pp. 1322–1327, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. Sekiya, A. Ohwada, M. Katae, T. Dambara, I. Nagaoka, and Y. Fukuchi, “Adenovirus vector-mediated transfer of 9 kDa granulysin induces DNA fragmentation in HuD antigen-expressing small cell lung cancer murine model cells,” Respirology, vol. 7, no. 1, pp. 29–35, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Yi, Y. Fu, G. Jin, M. Li, X. Zhang, and W. Song, “Intracellularly expressed granulysin induced apoptosis in hepatoma cells and role of mitochondrial apoptotic pathway,” Cellular Immunology, vol. 255, no. 1-2, pp. 76–81, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus