About this Journal Submit a Manuscript Table of Contents
ISRN Thermodynamics
Volume 2012 (2012), Article ID 917836, 11 pages
http://dx.doi.org/10.5402/2012/917836
Research Article

Thermodynamics of f.c.c.-Ni–Fe Alloys in a Static Applied Magnetic Field

1Department of Theoretical Physics, Institute for Applied Physics, N.A.S. of Ukraine, 58 Petropavlivska Street, 40030 Sumy, Ukraine
2Department of Solid State Theory, G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, 03680 Kyyiv-142, Ukraine
3Department of Materials Design and Technology, Institute for Advanced Materials Science and Innovative Technologies, 15 Sauletekio Avenue, 10224 Vilnius, Lithuania
4Department of Partial Differential Equations, Laboratoire Jean Kuntzmann, UMR 5224 CNRS, Tour IRMA, rue des Mathématiques 51, P.O. Box 53, 38041 Grenoble Cedex 9, France

Received 10 February 2012; Accepted 27 February 2012

Academic Editors: N. S. Ananikian, G. Maurin, B. Merinov, and S. Yulin

Copyright © 2012 I. V. Vernyhora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Béranger, F. Duffault, J. Morlet, J.-F. Tiers, and J. Friedel, Les alliages de fer et de nickel: cent ans après la découverte de l'Invar, Technique & Documentation, New York, NY, USA, 1996.
  2. T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, Binary Alloy Phase Diagrams, vol. 1, American Society for Metals, Metals Park, CA, USA, 1st edition, 1986.
  3. S. V. Vonsovskii, Magnetism, Nauka, Moscow, Russia, 1971.
  4. D. C. Mattis, The Theory of Magnetism, vol. 17 of Springer Series in Solid-State Sciences, Springer, New York, NY, USA, 1981.
  5. R. M. Bozorth, “Magnetism,” Reviews of Modern Physics, vol. 19, no. 1, pp. 29–86, 1947. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Bozorth, “The permalloy problem,” Reviews of Modern Physics, vol. 25, no. 1, pp. 42–48, 1953. View at Publisher · View at Google Scholar
  7. A. T. English and G. Y. Chin, “Metallurgy and magnetic properties control in permalloy,” Journal of Applied Physics, vol. 38, no. 3, pp. 1183–1187, 1967. View at Publisher · View at Google Scholar
  8. C.-W. Yang and J. I. Goldstein, “Phase decomposition of invar alloys. Information from the study of meteorites,” in The Invar Effect: A Centennial Symposium, J. Wittenauer, Ed., pp. 137–146, The Minerals, Metals & Materials Society, Philadelphia, PA, USA, 1997.
  9. P. R. Munroe and M. Hatherly, “Observation of a L12 superlattice in Fe3Ni,” Scripta Metallurgica et Materiala, vol. 32, no. 1, pp. 93–97, 1995.
  10. E. F. Wassermann, “The invar problem,” Journal of Magnetism and Magnetic Materials, vol. 100, no. 1–3, pp. 346–362, 1991.
  11. E. F. Wassermann, “Invar and anti-invar effect: finally understood after 100 years?” in The Invar Effect: A Centennial Symposium, J. Wittenauer, Ed., pp. 51–62, The Minerals, Metals & Materials Society, Philadelphia, PA, USA, 1997.
  12. A. P. Miodownik, “The concept of two gamma states,” in Physics and Application of Invar Alloys, H. Saito, et al., Ed., Honda Memorial Series on Material Science, chapter 12, no. 3, pp. 288–310, Maruzen Company, Ltd., Tokyo, Japan, 1978.
  13. E. F. Wasserman, “Invar: moment-volume instabilities in transition metals and alloys,” in Ferromagnetic Materials, K. H. J. Buschow and E. P. Wohlfarth, Eds., vol. 5, pp. 237–322, Elsevier, Elsevier, Amsterdam, The Netherlands, 1st edition, 1990.
  14. E. Z. Valiev, “Phenomenological theory of magnetoelastic interactions in invars and elinvars,” Soviet Physics Uspekhi, vol. 34, no. 8, pp. 685–704, 1991. View at Publisher · View at Google Scholar
  15. T. M. Radchenko and V. A. Tatarenko, “Fe–Ni alloys at high pressures and temperatures: statistical thermodynamics and kinetics of the L12 or D019 atomic order,” Uspehi Fiziki Metallov, vol. 9, no. 1, pp. 1–170, 2008.
  16. M. A. Krivoglaz and V. D. Sadovskii, “Effect of high magnetic fields on phase transitions,” Fiz. Met. Metalloved., vol. 18, no. 4, pp. 502–505, 1964.
  17. D. M. C. Nicholson, R. A. Kisner, G. M. Ludtka et al., “The effect of high magnetic field on phase stability in Fe-Ni,” Journal of Applied Physics, vol. 95, no. 11, pp. 6580–6582, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Shimizu and T. Kakeshita, “Effect of magnetic fields on martensitic transformations in ferrous alloys and steels,” ISIJ International, vol. 29, no. 2, pp. 97–116, 1989.
  19. H. Ohtsuka, “Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field,” Science and Technology of Advanced Materials, vol. 9, no. 1, Article ID 013004, 2008. View at Publisher · View at Google Scholar
  20. H. D. Joo, S. U. Kim, N. S. Shin, and Y. M. Koo, “An effect of high magnetic field on phase transformation in Fe–C system,” Materials Letters, vol. 43, no. 5-6, pp. 225–229, 2000. View at Publisher · View at Google Scholar
  21. A. Ispas and A. Bund, Proceedings of the Joint 15th Riga and 6th PAMIR International Conference on Fundamental and Applied MHD, 2005.
  22. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science, vol. 309, no. 5741, pp. 1688–1692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. I. V. Vernyhora, D. Ledue, R. Patte, and H. Zapolsky, “Monte Carlo investigation of the correlation between magnetic and chemical ordering in NiFe alloys,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 17, pp. 2465–2470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. V. A. Tatarenko and T. M. Radchenko, “The application of radiation diffuse scattering to the calculation of phase diagrams of F.C.C. substitutional alloys,” Intermetallics, vol. 11, no. 11-12, pp. 1319–1326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Bokoch and V. A. Tatarenko, “A semi-empirical parameterization of interatomic interactions based on the statistical-thermodynamic analysis of the data on radiation diffraction and phase equilibria in f.c.c.-Ni–Fe alloys,” Solid State Phenomena, vol. 138, pp. 303–318, 2008.
  27. S. M. Bokoch and V. A. Tatarenko, “Interatomic interactions in f.c.c.-Ni–Fe alloys,” Uspehi Fiziki Metallov, vol. 11, no. 4, pp. 413–460, 2010.
  28. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, “Semi-empirical parameterization of interatomic interactions and kinetics of the atomic ordering in Ni–Fe–C permalloys and elinvars,” Defect and Diffusion Forum, vol. 280-281, pp. 29–78, 2008. View at Scopus
  29. I. V. Vernyhora, S. M. Bokoch, and V. A. Tatarenko, “Interplay of magnetic and structural properties of f.c.c.-Ni–Fe alloys: study of statistical thermodynamics and kinetics by means of methods of computer simulation,” Uspehi Fiziki Metallov, vol. 11, no. 3, pp. 313–368, 2010.
  30. A. G. Khachaturyan, Theory of Structural Transformations in Solids, Dover Publications, Mineola, NY, USA, 2008.
  31. A. A. Smirnov, Molecular-Kinetic Theory of Metals, Nauka, Moscow, Russia, 1966.
  32. A. G. Khachaturyan, “Ordering in substitutional and interstitial solid solutions,” Progress in Materials Science, vol. 22, no. 1-2, pp. 1–150, 1978. View at Scopus
  33. J. S. Smart, Effective Field in Theories of Magnetism, W. B. Saunders Company, Philadelphia, PA, USA, 1966.
  34. A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford University Press, New York, NY, USA, 2000.
  35. Y. T. Millev and M. Fähnle, “No longer transcendental equations in the homogeneous mean-field theory of ferromagnets,” Physica Status Solidi, vol. 171, no. 2, pp. 499–504, 1992.
  36. Y. T. Millev and M. Fähnle, “On the mean-field treatment of ferromagnetic models with arbitrary anisotropy,” Physica Status Solidi, vol. 176, no. 2, pp. K67–K69, 1993.
  37. Y. T. Millev and M. Fähnle, “A parametric solution to the general mean-field equation of ferromagnetism,” Physica Status Solidi, vol. 182, no. 1, pp. K35–K38, 1994.
  38. Y. T. Millev and M. Fähnle, “A contribution to the mean-field analysis of amorphous magnets,” Physica Status Solidi, vol. 179, no. 2, pp. 551–556, 1993.
  39. K. Ried, Y. Millev, M. Fähnle, and H. Kronmüller, “Renormalized field theory of the critical behaviour of anisotropic dipolar ferromagnets,” Physics Letters A, vol. 180, no. 4-5, pp. 370–374, 1993.
  40. Y. T. Millev, H. P. Oepen, and J. Kirschner, “Influence of external field on spin reorientation transitions in uniaxial ferromagnets. I. General analysis for bulk and thin-film systems,” Physical Review B, vol. 57, no. 10, pp. 5837–5859, 1998.
  41. http://www.magnet.fsu.edu/.
  42. T. Garcin, S. Rivoirard, and E. Beaugnon, “In situ characterization of phase transformations in a magnetic field in Fe-Ni alloys,” Journal of Physics, vol. 156, no. 1, Article ID 012010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Garcin, S. Rivoirard, and E. Beaugnon, “Thermodynamic analysis using experimental magnetization data of the austenite/ferrite phase transformation in Fe-xNi alloys (x=0, 2, 4 wt%) in a strong magnetic field,” Journal of Physics D, vol. 44, no. 1, Article ID 015001, 2011. View at Publisher · View at Google Scholar
  44. Y. Ma, S. Awaji, K. Watanabe, M. Matsumoto, and N. Kobayashi, “X-ray diffraction study of the structural phase transition of Ni2MnGa alloys in high magnetic fields,” Solid State Communications, vol. 113, no. 12, pp. 671–676, 2000. View at Publisher · View at Google Scholar · View at Scopus