Table 3: Same as Table 1 but for L2 Laguerre polynomials with 𝑔 = 3 and = 4 .

𝜉 𝑘 ( ) : 5 . 2 9 0 0 7 ± 1 . 6 5 3 1 0 𝑖 3 . 7 0 9 9 3 ± 5 . 0 5 1 3 0 𝑖

𝑛 = 0 5 . 2 9 0 0 7 ± 1 . 6 5 3 1 0 𝑖 3 . 7 0 9 9 3 ± 5 . 0 5 1 3 0 𝑖
10 4 . 8 4 1 9 8 ± 1 . 5 7 1 2 9 𝑖 3 . 2 5 5 2 4 ± 4 . 7 8 0 0 4 𝑖
20 4 . 7 1 2 9 9 ± 1 . 5 4 8 8 8 𝑖 3 . 1 2 8 3 9 ± 4 . 7 0 7 7 6 𝑖
𝜂 𝑘 ( , 𝑛 ) :30 4 . 6 4 5 2 3 ± 1 . 5 3 7 3 2 𝑖 3 . 0 6 2 4 6 ± 4 . 6 7 0 6 5 𝑖
40 4 . 6 0 1 8 3 ± 1 . 5 2 9 9 8 𝑖 3 . 0 2 0 4 6 ± 4 . 6 4 7 1 3 𝑖
50 4 . 5 7 1 0 0 ± 1 . 5 2 4 7 9 𝑖 2 . 9 9 0 7 4 ± 4 . 6 3 0 5 3 𝑖
60 4 . 5 4 7 6 6 ± 1 . 5 2 0 8 7 𝑖 2 . 9 6 8 2 8 ± 4 . 6 1 8 0 1 𝑖

𝜉 𝑘 ( ) : 4 . 2 8 3 6 1 ± 1 . 4 7 6 8 4 𝑖 2 . 7 1 6 3 9 ± 4 . 4 7 7 3 9 𝑖