Table 5: Same as Table 1 but for J2 Jacobi polynomials with 𝑔 = 3 , = 4 , and = 4 .

𝜉 𝑘 ( ) : 1 . 5 6 8 4 6 ± 2 . 1 0 2 7 8 𝑖 3 . 0 0 2 9 7 ± 0 . 9 1 1 9 9 𝑖

𝑛 = 0 1 . 5 6 8 4 6 ± 2 . 1 0 2 7 8 𝑖    3 . 0 0 2 9 7 ± 0 . 9 1 1 9 9 𝑖
10 1 . 4 5 2 0 1 ± 1 . 8 9 8 9 0 𝑖 2 . 7 6 8 3 4 ± 0 . 8 2 6 2 6 𝑖
20 1 . 4 2 4 0 7 ± 1 . 8 5 4 3 3 𝑖 2 . 7 1 3 6 0 ± 0 . 8 0 7 3 3 𝑖
𝜂 𝑘 ( , 𝑛 ) :30    1 . 4 1 1 3 9 ± 1 . 8 3 4 3 5 𝑖      2 . 6 8 8 8 2 ± 0 . 7 9 8 8 4 𝑖   
40 1 . 4 0 4 1 4 ± 1 . 8 2 2 9 7 𝑖 2 . 6 7 4 6 6 ± 0 . 7 9 4 0 1 𝑖
50 1 . 3 9 9 4 4 ± 1 . 8 1 5 6 1 𝑖 2 . 6 6 5 5 0 ± 0 . 7 9 0 8 8 𝑖
60 1 . 3 9 6 1 5 ± 1 . 8 1 0 4 6 𝑖 2 . 6 5 9 0 7 ± 0 . 7 8 8 6 9 𝑖

𝜉 𝑘 ( ) :   1 . 3 7 7 4 5 ± 1 . 7 8 1 1 8 𝑖      2 . 6 2 2 5 5 ± 0 . 7 7 6 2 4 𝑖