About this Journal Submit a Manuscript Table of Contents
ISRN Neurology
Volume 2012 (2012), Article ID 924081, 9 pages
http://dx.doi.org/10.5402/2012/924081
Clinical Study

Integrating Dense Array EEG in the Presurgical Evaluation of Temporal Lobe Epilepsy

1Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka 4308558, Japan
2Electrical Geodesics, Inc., Eugene, OR 97403, USA
3Department of Psychology, University of Oregon, Eugene, OR 97403, USA

Received 6 September 2012; Accepted 25 September 2012

Academic Editors: A. Martinuzzi and P. G. Simos

Copyright © 2012 Madoka Yamazaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. A. Hauser, S. S. Rich, J. F. Annegers, and V. E. Anderson, “Seizure recurrence after a 1st unprovoked seizure: an extended follow-up,” Neurology, vol. 40, no. 8, pp. 1163–1170, 1990. View at Scopus
  2. J. Engel, “Surgical treatment for epilepsy: too little, too late?” Journal of the American Medical Association, vol. 300, no. 21, pp. 2548–2550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Semah, M. C. Picot, C. Adam et al., “Is the underlying cause of epilepsy a major prognostic factor for recurrence?” Neurology, vol. 51, no. 5, pp. 1256–1262, 1998. View at Scopus
  4. S. R. Benbadis, W. O. Tatum, and F. L. Vale, “When drugs don't work: an algorithmic approach to medically intractable epilepsy,” Neurology, vol. 55, no. 12, pp. 1780–1784, 2000. View at Scopus
  5. J. Engel Jr. and D. A. Shewmon, “Overview: who should be considered a surgical candidate?” in Surgical Treatment of the Epilepsies, J. Engel, Ed., pp. 23–34, Raven Press, New York, NY, USA, 2nd edition, 1993.
  6. P. Kwan and M. J. Brodie, “Early identification of refractory epilepsy,” New England Journal of Medicine, vol. 342, no. 5, pp. 314–319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Wiebe, W. T. Blume, J. P. Girvin, and M. Eliasziw, “A randomized, controlled trial of surgery for temporal-lobe epilepsy,” New England Journal of Medicine, vol. 345, no. 5, pp. 311–318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Janszky, I. Janszky, R. Schulz et al., “Temporal lobe epilepsy with hippocampal sclerosis: predictors for long-term surgical outcome,” Brain, vol. 128, no. 2, pp. 395–404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Schmidt and K. Stavem, “Long-term seizure outcome of surgery versus no surgery for drug-resistant partial epilepsy: a review of controlled studies,” Epilepsia, vol. 50, no. 6, pp. 1301–1309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Engel, “The timing of surgical intervention for mesial temporal lobe epilepsy: a plan for a randomized clinical trial,” Archives of Neurology, vol. 56, no. 11, pp. 1338–1341, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Sperling and L. Guina, “The necessity for sphenoidal electrodes in the presurgical evaluation of temporal lobe epilepsy: pro position,” Journal of Clinical Neurophysiology, vol. 20, no. 5, pp. 299–304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. G. D. P. Menendez, S. G. Andino, G. Lantz, C. M. Michel, and T. Landis, “Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations,” Brain Topography, vol. 14, no. 2, pp. 131–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. G. D. P. Menendez, M. M. Murray, C. M. Michel, R. Martuzzi, and S. L. Gonzalez Andino, “Electrical neuroimaging based on biophysical constraints,” NeuroImage, vol. 21, no. 2, pp. 527–539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Yamazaki, D. M. Tucker, A. Fujimoto et al., “Comparison of dense array EEG with simultaneous intracranial EEG for Interictal spike detection and localization,” Epilepsy Research, vol. 98, no. 2-3, pp. 166–173, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. M. Michel and M. M. Murray, “Towards the utilization of EEG as a brain imaging tool,” NeuroImage, vol. 61, no. 2, pp. 371–385, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. D. Holmes, D. M. Tucker, J. M. Quiring, S. Hakimian, J. W. Miller, and J. G. Ojemann, “Comparing noninvasive dense array and intracranial electroencephalography for localization of seizures,” Neurosurgery, vol. 66, no. 2, pp. 354–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. D. Pascual-Marqui, M. Esslen, K. Kochi, and D. Lehmann, “Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 24, pp. 91–95, 2002. View at Scopus
  18. G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clinical Neurophysiology, vol. 114, no. 1, pp. 63–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Lantz, L. Spinelli, M. Seeck, R. G. De Peralta Menendez, C. C. Sottas, and C. M. Michel, “Propagation of interictalepileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study,” Journal of Clinical Neurophysiology, vol. 20, no. 5, pp. 311–319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. P. Jones, “Recording of the basal electroencephalogram with sphenoidal needle electrodes,” Electroencephalography and Clinical Neurophysiology, vol. 3, abstract, p. 100, 1951.
  21. G. Pampiglione and J. Kerridge, “EEG abnormalities from the temporal lobe studied with sphenoidal electrodes,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 19, pp. 117–129, 1956.
  22. O. Kristensen and E. H. Sindrup, “Sphenoidal electrodes. Their use and value in the electroencephalographic investigation of complex partial epilepsy,” Acta Neurologica Scandinavica, vol. 58, no. 3, pp. 157–166, 1978. View at Scopus
  23. D. A. Marks, A. Katz, J. Brooke, D. D. Spencer, and S. S. Spencer, “Comparison and correlation of surface and sphenoidal electrodes with simultaneous intracranial recording: an interictal study,” Electroencephalography and Clinical Neurophysiology, vol. 82, no. 1, pp. 23–29, 1992. View at Scopus
  24. A. M. Kanner, L. Ramirez, and J. C. Jones, “The utility of placing sphenoidal electrodes under the foramen ovale with fluoroscopic guidance,” Journal of Clinical Neurophysiology, vol. 12, no. 1, pp. 72–81, 1995. View at Scopus
  25. H. Yoshinaga, J. Hattori, T. Nakahori et al., “Combined use of sphenoidal electrodes and the dipole localization method for the identification of the mesial temporal focus,” European Journal of Neurology, vol. 8, no. 2, pp. 149–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Hamaneh, C. Limotai, and H. O. Lüders, “Sphenoidal electrodes significantly change the results of source localization of interictal spikes for a large percentage of patients with temporal lobe epilepsy,” Journal of Clinical Neurophysiology, vol. 28, no. 4, pp. 373–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. W. Homan, M. C. Jones, and S. Rawat, “Anterior temporal electrodes in complex partial seizures,” Electroencephalography and Clinical Neurophysiology, vol. 70, no. 2, pp. 105–109, 1988. View at Scopus
  28. B. M. Ito, S. Sato, O. Devinsky, and W. Theodore, “Sphenoidal versus true anterior temporal electrodes for detection of epileptiform discharges,” Neurology, vol. 38, supplement 1, p. 234, 1988.
  29. C. D. Binnie, D. Marston, C. E. Polkey, and D. Amin, “Distribution of temporal spikes in relation to the sphenoidal electrode,” Electroencephalography and Clinical Neurophysiology, vol. 73, no. 5, pp. 403–409, 1989. View at Scopus
  30. N. S. Chu, C. L. Wu, T. S. Tseng, and L. L. Kuo, “Sphenoidal EEG recording using acupuncture needle electrode in complex partial seizure,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 2, pp. 119–126, 1991. View at Scopus
  31. W. T. Blume, “The necessity for sphenoidal electrodes in the presurgical evaluation of temporal lobe epilepsy: con position,” Journal of Clinical Neurophysiology, vol. 20, no. 5, pp. 305–310, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Brodbeck, L. Spinelli, A. M. Lascano et al., “Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients,” Brain, vol. 134, no. 10, pp. 2887–2897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. T. F. Oostendorp, J. Delbeke, and D. F. Stegeman, “The conductivity of the human skull: results of in vivo and in vitro measurements,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 11, pp. 1487–1492, 2000. View at Scopus
  34. J. A. Malmivuo and V. E. Suihko, “Effect of skull resistivity on the spatial resolutions of EEG and MEG,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1276–1280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Mikuni, T. Nagamine, A. Ikeda et al., “Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy,” NeuroImage, vol. 5, no. 4, pp. 298–306, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Oishi, H. Otsubo, S. Kameyama et al., “Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography,” Epilepsia, vol. 43, no. 11, pp. 1390–1395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Huiskamp, Z. Agirre-Arrizubieta, and F. Leijten, “Regional differences in the sensitivity of MEG for interictal spikes in epilepsy,” Brain Topography, vol. 23, no. 2, pp. 159–164, 2010. View at Publisher · View at Google Scholar · View at Scopus