About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2012 (2012), Article ID 926817, 11 pages
http://dx.doi.org/10.5402/2012/926817
Research Article

Intratumoral TLR-4 Agonist Injection Is Critical for Modulation of Tumor Microenvironment and Tumor Rejection

1Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga 6690, 2° Andar, 90680-001 Porto Alegre, RS, Brazil
2Departments of Molecular Microbiology and Immunology, Veterans Affairs Medical Center, Oregon Health and Science University, Portland, OR 97239, USA

Received 9 May 2012; Accepted 20 June 2012

Academic Editors: K. Müller and A. Vicente

Copyright © 2012 Fabio Luiz Dal Moro Maito et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Håkansson, B. Gustafsson, L. Krysander, B. Hjelmqvist, B. Rettrup, and L. Håkansson, “Biochemotherapy of metastatic malignant melanoma. Predictive value of tumour-infiltrating lymphocytes,” British Journal of Cancer, vol. 85, no. 12, pp. 1871–1877, 2001. View at Scopus
  2. F. Piras, R. Colombari, L. Minerba et al., “The predictive value of CD8, CD4, CD68 and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase,” Cancer, vol. 104, no. 6, pp. 1246–1254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Reiman, M. Kmieciak, M. H. Manjili, and K. L. Knutson, “Tumor immunoediting and immunosculpting pathways to cancer progression,” Seminars in Cancer Biology, vol. 17, no. 4, pp. 275–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Cui and F. Qiu, “Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model,” Cancer Immunology, Immunotherapy, vol. 55, no. 10, pp. 1267–1279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. de Souza and C. Bonorino, “Tumor immunosuppressive environment: effects on tumor-specific and nontumor antigen immune responses,” Expert Review of Anticancer Therapy, vol. 9, no. 9, pp. 1317–1332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. F. Wang, Y. Miyahara, and H. Y. Wang, “Toll-like receptors and immune regulation: implications for cancer therapy,” Oncogene, vol. 27, no. 2, pp. 181–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. W. B. Coley, “The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus erysipelas and the Bacillus prodigiosus),” Proceedings of the Royal Society of Medicine, vol. 3, pp. 1–48, 1910.
  8. M. Okamoto, T. Oshikawa, T. Tano et al., “Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling,” Journal of Immunotherapy, vol. 29, no. 1, pp. 78–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. O. M. Grauer, J. W. Molling, E. Bennink et al., “TLR ligands in the local treatment of established intracerebral murine gliomas,” Journal of Immunology, vol. 181, no. 10, pp. 6720–6729, 2008. View at Scopus
  10. U. K. Scarlett, J. R. Cubillos-Ruiz, Y. C. Nesbeth et al., “In situ stimulation of CD40 and toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells,” Cancer Research, vol. 69, no. 18, pp. 7329–7337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Berendt, R. J. North, and D. P. Kirstein, “The immunological basis of endotoxin induced tumor regression. Requirement for a pre existing state of concomitant anti tumor immunity,” Journal of Experimental Medicine, vol. 148, no. 6, pp. 1560–1569, 1978. View at Scopus
  12. R. Engelhardt, A. Mackensen, C. Galanos, and R. Andreesen, “Biological response to intravenously administered endotoxin in patients with advanced cancer,” Journal of Biological Response Modifiers, vol. 9, no. 5, pp. 480–491, 1990. View at Scopus
  13. S. Goto, S. Sakai, J. Kera, Y. Suma, G. I. Soma, and S. Takeuchi, “Intradermal administration of lipopolysaccharide in treatment of human cancer,” Cancer Immunology Immunotherapy, vol. 42, no. 4, pp. 255–261, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Otto, P. Schmid, A. Mackensen et al., “Phase II trial of intravenous endotoxin in patients with colorectal and non-small cell lung cancer,” European Journal of Cancer Part A, vol. 32, no. 10, pp. 1712–1718, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Chicoine, E. K. Won, and M. C. Zahner, “Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme,” Neurosurgery, vol. 48, no. 3, pp. 607–615, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. E. K. Won, M. C. Zahner, E. A. Grant, P. Gore, and M. R. Chicoine, “Analysis of the antitumoral mechanisms of lipopolysaccharide against glioblastoma multiforme,” Anti-Cancer Drugs, vol. 14, no. 6, pp. 457–466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. L. Mariani, D. Rajon, F. J. Bova, and W. J. Streit, “Nonspecific immunotherapy with intratumoral lipopolysaccharide and zymosan A but not GM-CSF leads to an effective anti-tumor response in subcutaneous RG-2 gliomas,” Journal of Neuro-Oncology, vol. 85, no. 3, pp. 231–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. J. Zhang, R. P. Seipp, S. S. Chen et al., “TAP expression reduces IL-10 expressing tumor infiltrating lymphocytes and restores immunosurveillance against melanoma,” International Journal of Cancer, vol. 120, no. 9, pp. 1935–1941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Palmowski, M. Salio, P. R. Dunbar, and V. Cerundolo, “The use of HLA class I tetramers to design a vaccination strategy for melanoma patients,” Immunological Reviews, vol. 188, pp. 155–163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Khoruts, A. Mondino, K. A. Pape, S. L. Reiner, and M. K. Jenkins, “A natural immunological adjuvant enhances T cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism,” Journal of Experimental Medicine, vol. 187, no. 2, pp. 225–236, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Fishman, B. Irena, S. Kellman-Pressman, M. Karas, and S. Segal, “The role of MHC class I glycoproteins in the regulation of induction of cell death in immunocytes by malignant melanoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1740–1744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Hirao, N. Onai, K. Hiroishi et al., “CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes,” Cancer Research, vol. 60, no. 8, pp. 2209–2217, 2000. View at Scopus
  24. T. Ishida, T. Oyama, D. P. Carbone, and D. I. Gabrilovich, “Defective function of langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors,” Journal of Immunology, vol. 161, no. 9, pp. 4842–4851, 1998. View at Scopus
  25. V. C. Liu, L. Y. Wong, T. Jang et al., “Tumor evasion of the immune system by converting CD4+CD25T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β,” Journal of Immunology, vol. 178, no. 5, pp. 2883–2892, 2007. View at Scopus
  26. Q. Chen, V. Daniel, D. W. Maher, and P. Hersey, “Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma,” International Journal of Cancer, vol. 56, no. 5, pp. 755–760, 1994. View at Scopus
  27. M. E. Polak, N. J. Borthwick, F. G. Gabriel et al., “Mechanisms of local immunosuppression in cutaneous melanoma,” British Journal of Cancer, vol. 96, no. 12, pp. 1879–1887, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Shrikant, A. Khoruts, and M. F. Mescher, “CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism,” Immunity, vol. 11, no. 4, pp. 483–493, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Curtsinger, M. Y. Gerner, D. C. Lins, and M. F. Mescher, “Signal 3 availability limits the CD8 T cell response to a solid tumor,” Journal of Immunology, vol. 178, no. 11, pp. 6752–6760, 2007. View at Scopus
  30. A. L. Marzo, K. D. Klonowski, A. le Bon, P. Borrow, D. F. Tough, and L. Lefrançois, “Initial T cell frequency dictates memory CD8+ T cell lineage commitment,” Nature Immunology, vol. 6, no. 8, pp. 793–799, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Hennemann, G. Beckmann, A. Eichelmann, A. Rehm, and R. Andreesen, “Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon γ and lipopolysaccharide,” Cancer Immunology Immunotherapy, vol. 45, no. 5, pp. 250–256, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Yang, C. T. Huang, X. Huang, and D. M. Pardoll, “Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance,” Nature Immunology, vol. 5, no. 5, pp. 508–515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. J. Cho, B. Y. Ahn, N. G. Lee, D. H. Lee, and D. S. Kim, “A combination of E. coli DNA fragments and modified lipopolysaccharides as a cancer immunotherapy,” Vaccine, vol. 24, no. 31-32, pp. 5862–5871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Preynat-Seauve, P. Schuler, E. Contassot, F. Beermann, B. Huard, and L. E. French, “Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection,” Journal of Immunology, vol. 176, no. 1, pp. 61–67, 2006. View at Scopus
  35. K. Furumoto, L. Soares, E. G. Engleman, and M. Merad, “Induction of potent antitumor immunity by in situ targeting of intratumoral DCs,” Journal of Clinical Investigation, vol. 113, no. 5, pp. 774–783, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Westwood, N. M. Haynes, J. Sharkey et al., “Toll-like receptor triggering and T-cell costimulation induce potent antitumor immunity in mice,” Clinical Cancer Research, vol. 15, no. 24, pp. 7624–7633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Villadangos, P. Schnorrer, and N. S. Wilson, “Control of MHC class II antigen presentation in dendritic cells: a balance between creative and destructive forces,” Immunological Reviews, vol. 207, pp. 191–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. N. S. Wilson, G. M. N. Behrens, R. J. Lundie et al., “Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity,” Nature Immunology, vol. 7, no. 2, pp. 165–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Huang, J. Zhao, H. Li et al., “Toll-like receptors on tumor cells facilitate evasion of immune surveillance,” Cancer Research, vol. 65, no. 12, pp. 5009–5014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. L. J. Young, N. S. Wilson, P. Schnorrer et al., “Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 45, pp. 17753–17758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Kisseleva, L. Song, M. Vorontchikhina, N. Feirt, J. Kitajewski, and C. Schindler, “NF-κB regulation of endothelial cell function during LPS-induced toxemia and cancer,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 2955–2963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Jayasinghe, N. Simiantonaki, R. Michel-Schmidt, and C. J. Kirkpatrick, “Comparative study of human colonic tumor-derived endothelial cells (HCTEC) and normal colonic microvascular endothelial cells (HCMEC): Hypoxia-induced sVEGFR-1 and sVEGFR-2 levels,” Oncology Reports, vol. 21, no. 4, pp. 933–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Guiducci, A. P. Vicari, S. Sangaletti, G. Trinchieri, and M. P. Colombo, “Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection,” Cancer Research, vol. 65, no. 8, pp. 3437–3446, 2005. View at Scopus
  44. S. Nierkens, M. H. den Brok, T. Roelofsen et al., “Route of administration of the TLR9 agonist CpG critically determines the efficacy of cancer immunotherapy in mice,” PloS One, vol. 4, no. 12, Article ID e8368, 2009. View at Scopus
  45. J. M. Ehrchen, C. Sunderkötter, D. Foell, T. Vogl, and J. Roth, “The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 557–566, 2009. View at Publisher · View at Google Scholar · View at Scopus