About this Journal Submit a Manuscript Table of Contents
ISRN Artificial Intelligence
Volume 2012 (2012), Article ID 929085, 6 pages
http://dx.doi.org/10.5402/2012/929085
Research Article

Generalized Fuzzy C-Means Clustering with Improved Fuzzy Partitions and Shadowed Sets

1Machine Vision Laboratory, Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran
2Departments of Electrical Engineering and Computer Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran

Received 13 September 2011; Accepted 18 October 2011

Academic Editor: I. Buciu

Copyright © 2012 Seyed Mohsen Zabihi and Mohammad-R Akbarzadeh-T. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ng and J. Han, “Efficient and effective clustering methods for spatial data mining,” in Proceedings of the 20th International Conference on Very Large Data Bases (VLDB '94), pp. 144–155, Santiago, Chile, 1994.
  2. J. C. Bezdek, R. J. Hathaway, M. J. Sabin, and W. T. Tucker, “Convergence theory for fuzzy c-means: counterexamples and repairs,” IEEE Transactions on Systems, Man and Cybernetics, vol. 17, no. 5, pp. 873–877, 1987. View at Scopus
  3. G. Karypis, E. H. Han, and V. Kumar, “Chameleon: hierarchical clustering using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68–75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: a new data clustering algorithm and its applications,” Data Mining and Knowledge Discovery, vol. 1, no. 2, pp. 141–182, 1997. View at Scopus
  5. G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: a multiresolution clustering approach for very large spatial databases,” in Proceedings of the 24th International Conference on Very Large Data Bases (VLDB '98), pp. 428–439, New York, NY, USA, 1998.
  6. Y. Xiu, S. T. Wang, X. Wu, and D. Hu, “The directional similarity-based clustering method DSCM,” Journal of Computer Research and Development, vol. 43, no. 8, pp. 1425–1431, 2006 (Chinese). View at Publisher · View at Google Scholar
  7. F. L. Chung, S. T. Wang, M. Xu, D. Hu, and Q. Lin, “Possibility theoretic clustering and its preliminary application to large image segmentation,” Soft Computing, vol. 11, no. 2, pp. 103–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. L. Fan, W. Z. Zhen, and W. X. Xie, “Suppressed fuzzy c-means clustering algorithm,” Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1607–1612, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms, Plenum, New York, NY, USA, 1981.
  10. F. Höppner and F. Klawonn, “Improved fuzzy partitions for fuzzy regression models,” International Journal of Approximate Reasoning, vol. 32, no. 2, pp. 85–102, 2003.
  11. C. Hwang and F. Rhee, “Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 107–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Zhu, F.-L. Chung, and S. Wang, “Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 3, pp. 578–591, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. F. Höppner and F. Klawonn, “A contribution to convergence theory of fuzzy c-means and derivatives,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 682–694, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Xu, A. Krzyzak, and E. Oja, “Rival penalized competitive learning for clustering analysis, RBF net, and curve detection,” IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 636–649, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. W. Pedrycz, “Shadowed sets: representing and processing fuzzy sets,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 28, no. 1, pp. 103–109, 1998. View at Scopus
  16. W. Pedrycz and G. Vukovich, “Granular computing with shadowed sets,” International Journal of Intelligent Systems, vol. 17, no. 2, pp. 173–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Pedycz, “Shadow sets: bridging fuzzy and rough sets,” in Rough Fuzzy Hybridization: A New Trend in Decision-Making, S. K. Pal and A. Skowron, Eds., Springer, Singapore, 1999.
  18. M. Niemeijer and B. van Ginneken, http://www.isi.uu.nl/Research/Databases/DRIVE/results.php, 2002.
  19. T. Ojala, M. Pietikèinen, and T. Mèenpaèa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Rezatofighi, A. Roodaki, and H. A. Noubari, “An enhanced segmentation of blood vessels in retinal images using Contourlet,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08), pp. 3530–3533, August 2008. View at Scopus