About this Journal Submit a Manuscript Table of Contents
ISRN Biophysics
Volume 2012 (2012), Article ID 937265, 6 pages
http://dx.doi.org/10.5402/2012/937265
Research Article

Direct Electron Transfer of Cytochrome c on ZnO Nanoparticles Modified Carbon Paste Electrode

1Department of Biochemistry, Payam-e-Noor University, 7371719578 Tehran, Iran
2Department of Biology, Payam-e-Noor University, Yazd, Iran

Received 3 January 2012; Accepted 19 January 2012

Academic Editors: D. Bulone and M. P. Ponomarenko

Copyright © 2012 Masoud Negahdary et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Sulak, O. Gökdoǧan, A. Gülce, and H. Gülce, “Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode,” Biosensors and Bioelectronics, vol. 21, no. 9, pp. 1719–1726, 2006. View at Publisher · View at Google Scholar · View at PubMed
  2. S. Diré, F. Babonneau, C. Sanchez, and J. Livage, “Sol-gel synthesis of siloxane-oxide hybrid coatings [Si(CH 3)2O·MOx : M=SI, Ti, Zr, Al] with luminescent properties,” Journal of Materials Chemistry, vol. 2, no. 2, pp. 239–244, 1992. View at Scopus
  3. H. Chen, X. Liu, H. Muthuraman et al., “Direct laser writing of microtunnels and reservoirs on nanocomposite materials,” Advanced Materials, vol. 18, no. 21, pp. 2876–2879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Ozdemir, M. G. Buonomenna, and E. Drioli, “Catalytic polymeric membranes: preparation and application,” Applied Catalysis A, vol. 307, no. 2, pp. 167–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J. W. Yu, and Y. C. Kim, “Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,” Chemistry of Materials, vol. 16, no. 4, pp. 688–692, 2004. View at Publisher · View at Google Scholar
  6. K. S. Giesfeldt, R. M. Connatser, M. A. De Jesús, N. V. Lavrik, P. Dutta, and M. J. Sepaniak, “Studies of the optical properties of metal-pliable polymer composite materials,” Applied Spectroscopy, vol. 57, no. 11, pp. 1346–1352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. E. W. Kreutz, H. Frerichs, J. Stricker, and D. A. Wesner, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 105, no. 1, 1995.
  8. I. Yoshinaga, N. Yamada, and S. Katayama, “Effect of inorganic components on thermal stability of methylsiloxane-based inorganic/orgnaic hybrids,” Journal of Sol-Gel Science and Technology, vol. 35, no. 1, pp. 21–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. C. Yi, C. Wang, and W. I. Park, “ZnO nanorods: synthesis, characterization and applications,” Semiconductor Science and Technology, vol. 20, no. 4, pp. S22–S34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Qiuxiang, Y. Ke, B. Wei et al., “Synthesis, optical and field emission properties of three different ZnO nanostructures,” Materials Letters, vol. 61, no. 18, pp. 3890–3892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Yuzhen, G. Lin, X. Huibin et al., “Low temperature synthesis and optical properties of small-diameter ZnO nanorods,” Journal of Applied Physics, vol. 99, no. 11, Article ID 114302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Hachigo, H. Nakahata, K. Higaki, S. Fujii, and S. I. Shikata, “Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering,” Applied Physics Letters, vol. 65, no. 20, pp. 2556–2558, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” Journal of Applied Physics, vol. 76, no. 3, pp. 1363–1398, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. W.-C. Shih and M.-S. Wu, “Growth of ZnO films on GaAs substrates with a SiO2 buffer layer by RF planar magnetron sputtering for surface acoustic wave applications,” Journal of Crystal Growth, vol. 137, no. 3-4, pp. 319–325, 1994. View at Scopus
  15. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. T. Hung, N. D. Quang, and S. Bernik, “Electrical and microstructural characteristics of ZnO-Bi2O3-based varistors doped with rare-earth oxides,” Journal of Materials Research, vol. 16, no. 10, pp. 2817–2823, 2001. View at Scopus
  17. N. F. Cooray, K. Kushiya, A. Fujimaki et al., “Optimization of Al-doped ZnO window layers for large-area Cu(InGa)Se2-based modules by RF/DC/DC multiple magnetron sputtering,” Japanese Journal of Applied Physics, vol. 38, no. 11, pp. 6213–6218, 1999. View at Scopus
  18. R. Paneva and D. Gotchev, “Non-linear vibration behavior of thin multilayer diaphragms,” Sensors and Actuators A, vol. 72, no. 1, pp. 79–87, 1999. View at Scopus
  19. E. Topoglidis, A. E. G. Cass, B. O'Regan, and J. R. Durrant, “Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films,” Journal of Electroanalytical Chemistry, vol. 517, no. 1-2, pp. 20–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Gao, Q. Li, W. Luan, H. Kawaoka, T. Sekino, and K. Niihara, “Preparation and electric properties of dense nanocrystalline zinc oxide ceramics,” Journal of the American Ceramic Society, vol. 85, no. 4, pp. 1016–1018, 2002.
  21. C. X. Xu and X. W. Sun, “Field emission from zinc oxide nanopins,” Applied Physics Letters, vol. 83, no. 18, pp. 3806–3808, 2003. View at Publisher · View at Google Scholar
  22. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. S. Lao, and Z. L. Wang, “Materials science: conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science, vol. 309, no. 5741, pp. 1700–1704, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. H. A.O. Hill, “The development of bioelectrochemistry,” Coordination Chemistry Reviews, vol. 151, pp. 115–123, 1996.
  24. S. Song, R. A. Clark, E. F. Bowden, and M. J. Tarlov, “Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold,” Journal of Physical Chemistry, vol. 97, no. 24, pp. 6564–6572, 1993. View at Scopus
  25. J. Yu and H. Ju, “Preparation of porous titania Sol−Gel matrix for immobilization of horseradish peroxidase by a vapor deposition method,” Analytical Chemistry, vol. 74, no. 14, pp. 3579–3583, 2002. View at Publisher · View at Google Scholar
  26. S. Rezaei-Zarchi, M. Negahdary, M. Doroudian et al., “Direct electron transfer of Myoglobin on nickel oxide Nanoparticles modified graphite electrode,” Advances in Environmental Biology, vol. 5, no. 10, pp. 3241–3248, 2011.
  27. C. Nanjundiah, S. F. McDevitt, and V. R. Koch, “Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces,” Journal of the Electrochemical Society, vol. 144, no. 10, pp. 3392–3397, 1997. View at Scopus
  28. S. Mikoshiba, S. Murai, H. Sumino, and S. Hayase, “Another role of LiI/tert-butylpyridine in room-temperature molten salt electrolytes containing water for dye-sensitized solar cell,” Chemistry Letters, no. 11, pp. 1156–1157, 2002.
  29. H. Fan, L. Yang, W. Hua et al., “Controlled synthesis of monodispersed CuO nanocrystals,” Nanotechnology, vol. 15, no. 1, pp. 37–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. E. A. Meulenkamp, “Size dependence of the dissolution of ZnO nanoparticles,” Journal of Physical Chemistry B, vol. 102, no. 40, pp. 7764–7769, 1998. View at Scopus
  31. A. J. Bard and L. R. Faulkner, “Electrochemical methods,” in Fundamentals and Applications, p. 241, John Wiley & Sons, New York, NY, USA, 2nd edition, 2001.
  32. E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,” Journal of Electroanalytical Chemistry, vol. 101, no. 1, pp. 19–28, 1979. View at Scopus
  33. E. Laviron, “The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes,” Journal of Electroanalytical Chemistry, vol. 100, pp. 263–270, 1979. View at Scopus