About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2012 (2012), Article ID 985853, 11 pages
http://dx.doi.org/10.5402/2012/985853
Research Article

Activated and Nonactivated Date Pits Adsorbents for the Removal of Copper(II) and Cadmium(II) from Aqueous Solutions

1Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo, Egypt
2Faculty of Science, Zagazig University, Zagazig, Egypt

Received 12 October 2012; Accepted 31 October 2012

Academic Editors: T. Panczyk, S. Sasaki, and D. Strout

Copyright © 2012 Nora M. Hilal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sun, L. Wang, and A. Wang, “Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions,” Journal of Hazardous Materials, vol. 136, no. 3, pp. 930–937, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. R. R. Bansode, Treatment of organic and inorganic pollutants in municipal wastewater by agricultural by-product based granular activated carbons [M.S. thesis], The Department of Food Science, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, La, USA, 2002.
  3. M. I. Kefala, A. I. Zouboulis, and K. A. Matis, “Biosorption of cadmium ions by Actinomycetes and separation by flotation,” Environmental Pollution, vol. 104, no. 2, pp. 283–293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Prasad, P. Gopikrishna, R. Kala, T. P. Rao, and G. R. K. Naidu, “Solid phase extraction vis-à-vis coprecipitation preconcentration of cadmium and lead from soils onto 5,7-dibromoquinoline-8-ol embedded benzophenone and determination by FAAS,” Talanta, vol. 69, no. 4, pp. 938–945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Mohan and G. Sreelakshmi, “Fixed bed column study for heavy metal removal using phosphate treated rice husk,” Journal of Hazardous Materials, vol. 153, no. 1-2, pp. 75–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. K. Agrawal, P. Shrivastav, and S. K. Menon, “Solvent extraction, separation of uranium (VI) with crown ether,” Separation and Purification Technology, vol. 20, no. 2-3, pp. 177–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Brach-Papa, B. Coulomb, J. L. Boudenne, V. Cerda, and F. Theraulaz, “Spectrofluorimetric determination of aluminum in drinking waters by sequential injection analysis,” Analytica Chimica Acta, vol. 457, no. 2, pp. 311–318, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. Brown, S. A. Gill, and S. J. Allen, “Metal removal from wastewater using peat,” Water Research, vol. 34, no. 16, pp. 3907–3916, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Gopal and K. P. Elango, “Equilibrium, kinetic and thermodynamic studies of adsorption of fluoride onto plaster of Paris,” Journal of Hazardous Materials, vol. 141, no. 1, pp. 98–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. I. Kandah, “Zinc and cadmium adsorption on low-grade phosphate,” Separation and Purification Technology, vol. 35, no. 1, pp. 61–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sharma, V. K. Gupta, V. K. Saini, C. K. Jain, and I. Ali, “Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste,” Water Research, vol. 37, no. 16, pp. 4038–4044, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Demirbas, M. Kobya, S. Tncel, and S. Sencan, “Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith,” Bioresource Technology, vol. 84, no. 3, pp. 291–297, 2002. View at Publisher · View at Google Scholar
  13. H. Parab, S. Joshi, N. Shenoy, A. Lali, U. S. Sarma, and M. Sudersanan, “Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith,” Process Biochemistry, vol. 41, no. 3, pp. 609–615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Qu, “Research progress of novel adsorption processes in water purification: a review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 1–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Lee, J. W. Park, and J. H. Lee, “Waste green sands as reactive media for the removal of zinc from water,” Chemosphere, vol. 56, no. 6, pp. 571–581, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. N. Bhatti, B. Mumtaz, M. A. Hanif, and R. Nadeem, “Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass,” Process Biochemistry, vol. 42, no. 4, pp. 547–553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. O. Olayinka, B. I. Alo, and T. Adu, “Sorption of heavy metals from electroplating effluents by low-cost adsorbents II: use of waste tea, coconut shell and coconut husk,” Journal of Applied Sciences, vol. 7, no. 16, pp. 2307–2313, 2007. View at Scopus
  18. R. C. Ansal and M. Goyal, Activated Carbon Adsorption, Taylor & Francis, London, UK, 2005.
  19. R. Malik, D. S. Ramteke, and S. R. Wate, “Adsorption of malachite green on groundnut shell waste based powdered activated carbon,” Waste Management, vol. 27, no. 9, pp. 1129–1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. B. Wan Nik, M. M. Rahman, A. M. Yusof, F. N. Ani, and C. N. Che Adnan, “Production of activated carbon from palm oil shell waste and its adsorption characteristics,” in Proceedings of the 1st International Conference on Natural Resources, Engineering and Technology, pp. 646–654, Putrajaya, Malaysia, July 2006.
  21. F. Li, P. Du, W. Chen, and S. Zhang, “Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting,” Analytica Chimica Acta, vol. 585, no. 2, pp. 211–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. I. D. Mall, V. C. Srivastava, and N. K. Agarwal, “Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses,” Dyes and Pigments, vol. 69, no. 3, pp. 210–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. H. A. Elliott and C. P. Huang, “Adsorption characteristic of some Cu(II) complexes on alumina silicates,” Water Research, vol. 15, no. 7, pp. 849–854, 1981. View at Publisher · View at Google Scholar
  24. V. L. Snoeyink and D. Jenkins, Water Chemistry, John Wiley & Sons, New York, NY, USA, 1980.
  25. N. Kannan and A. Xavier, “New composite mixed adsorbents for the removal of acetic acid by adsorption from aqueous solutions a comparative study,” Toxicological and Environmental Chemistry, vol. 79, no. 1-2, pp. 95–107, 2001. View at Scopus
  26. A. Saeed, M. Iqbal, and M. W. Akhtar, “Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk),” Journal of Hazardous Materials, vol. 117, no. 1, pp. 65–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. G. McKay and J. F. Poter, “Equilibrium parameter for the sorption of copper, cadmium and zinic ion onto peat,” Journal of Chemical Technology and Biotechnology, vol. 69, no. 3, pp. 309–320, 1997. View at Publisher · View at Google Scholar
  28. F. Pagnanelli, A. Esposito, L. Toro, and F. Vegliò, “Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: langmuir-type empirical model,” Water Research, vol. 37, no. 3, pp. 627–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Langmuir, “The constitution and fundamental properties of solids and liquids. Part I. Solids,” The Journal of the American Chemical Society, vol. 38, no. 2, pp. 2221–2295, 1916. View at Scopus
  30. P. K. Malik, “Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: a case study of acid yellow 36,” Dyes and Pigments, vol. 56, no. 3, pp. 239–249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. H. Kalavathy, T. Karthikeyan, S. Rajgopal, and L. R. Miranda, “Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust,” Journal of Colloid and Interface Science, vol. 292, no. 2, pp. 354–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Dubinin and L. V. Radushkevich, “Equation of the characteristic curve of activated charcoal,” Proceedings of the Academy of Sciences, Physical Chemistry Section, USSR, vol. 55, pp. 331–333, 1947.
  33. M. Polanyi, “Section III.—theories of the adsorption of gases. A general survey and some additional remarks. Introductory paper to section III,” Transactions of the Faraday Society, vol. 28, pp. 316–333, 1932. View at Scopus
  34. N. Kannan and T. Veemaraj, “Removal of lead(II) ions by adsorption onto bamboo dust and commercial activated carbons—a comparative study,” E-Journal of Chemistry, vol. 6, no. 1, pp. 247–256, 2009. View at Scopus
  35. E. Bulut, M. Özacar, and İ. A. Şengil, “Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 613–622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Bayramoǧlu and M. Y. Arica, “Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets,” Chemical Engineering Journal, vol. 143, no. 1–3, pp. 133–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. E. Argun and S. Dursun, “Cadmium removal using activated pine bark,” Journal of International Environmental Application and Science, vol. 3, no. 1, pp. 37–42, 2008.
  38. H. Ahsan, I. Nazrut, I. Anarul, and A. M. fiqul, “Removal of copper from aqueous solution using orange, sawdust and bagasse,” Pakistan Journal of Analytical and Environmental Chemistry, vol. 8, no. 1-2, pp. 21–25, 2007.
  39. A. J. Ahamed and A. S. Begum, “Adsorption of copper from aqueous solution using low cost adsorption,” Archives of Applied Science Research, vol. 4, no. 3, pp. 1532–1539, 2012.