About this Journal Submit a Manuscript Table of Contents
ISRN Vascular Medicine
Volume 2012 (2012), Article ID 987629, 17 pages
http://dx.doi.org/10.5402/2012/987629
Review Article

Pro- and Anti-Inflammatory Cytokine Networks in Atherosclerosis

Department of Physiology, Independence Blue Cross Cardiovascular Research Center and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Room 1050, MERB, 3500 North Broad Street, Philadelphia, PA 19140, USA

Received 11 October 2012; Accepted 31 October 2012

Academic Editors: D. Guidolin, J. Komorowski, and J. E. Nordrehaug

Copyright © 2012 Michael V. Autieri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Rosamond, K. Flegal, K. Furie et al., “Heart disease and stroke statistics-2008 update: a report from the American heart association statistics committee and stroke statistics subcommittee,” Circulation, vol. 117, no. 4, pp. e25–e146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. K. Hansson, “Inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1695, 2005. View at Publisher · View at Google Scholar
  3. F. Liao, J. A. Berliner, M. Mehrabian et al., “Minimally modified low density lipoprotein is biologically active in vivo in mice,” Journal of Clinical Investigation, vol. 87, no. 6, pp. 2253–2257, 1991. View at Scopus
  4. M. T. Quinn, S. Parthasarathy, L. G. Fong, and D. Steinberg, “Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 9, pp. 2995–2998, 1987. View at Scopus
  5. J. C. Poole and H. W. FLorey, “Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits,” The Journal of Pathology and Bacteriology, vol. 75, no. 2, pp. 245–251, 1958. View at Publisher · View at Google Scholar
  6. M. A. Gimbrone Jr. and M. R. Buchanan, “Interactions of platelets and leukocytes with vascular endothelium: in vitro studies,” Annals of the New York Academy of Sciences, vol. 401, pp. 171–183, 1982. View at Scopus
  7. R. Ross, “Atherosclerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar
  8. G. K. Hansson and P. Libby, “The immune response in atherosclerosis: a double-edged sword,” Nature Reviews Immunology, vol. 6, no. 7, pp. 508–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Galkina and K. Ley, “Immune and inflammatory mechanisms of atherosclerosis,” Annual Review of Immunology, vol. 27, pp. 165–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Tedgui and Z. Mallat, “Anti-inflammatory mechanisms in the vascular wall,” Circulation Research, vol. 88, no. 9, pp. 877–887, 2001. View at Scopus
  11. L. Robbie and P. Libby, “Inflammation and atherothrombosis,” Annals of the New York Academy of Sciences, vol. 947, pp. 167–179, 2001. View at Scopus
  12. R. Ylitalo, O. Oksala, S. Ylä-Herttuala, and P. Ylitalo, “Effects of clodronate (dichloromethylene bisphosphonate) on the development of experimental atherosclerosis in rabbits,” Journal of Laboratory and Clinical Medicine, vol. 123, no. 5, pp. 769–776, 1994. View at Scopus
  13. T. A. Hamilton, G. Ma, and G. M. Chisolm, “Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-α mRNA in stimulated murine peritoneal macrophages,” The Journal of Immunology, vol. 144, no. 6, pp. 2343–2350, 1990. View at Scopus
  14. L. T. Malden, A. Chait, E. W. Raines, and R. Ross, “The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocyte-derived macrophages,” The Journal of Biological Chemistry, vol. 266, no. 21, pp. 13901–13907, 1991. View at Scopus
  15. L. Nagy, P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans, “Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ,” Cell, vol. 93, no. 2, pp. 229–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Gosling, S. Slaymaker, L. Gu et al., “MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B,” Journal of Clinical Investigation, vol. 103, no. 6, pp. 773–778, 1999. View at Scopus
  17. L. Gu, Y. Okada, S. K. Clinton et al., “Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice,” Molecular Cell, vol. 2, no. 2, pp. 275–281, 1998. View at Scopus
  18. J. Llodrá, V. Angeli, J. Liu, E. Trogan, E. A. Fisher, and G. J. Rendolph, “Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11779–11784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Arnold, A. Henry, F. Poron et al., “Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis,” Journal of Experimental Medicine, vol. 204, no. 5, pp. 1057–1069, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Khallou-Laschet, A. Varthaman, G. Fornasa et al., “Macrophage plasticity in experimental atherosclerosis,” PloS ONE, vol. 5, no. 1, Article ID e8852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Shimada, “Immune system and atherosclerotic disease—heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis,” Circulation Journal, vol. 73, no. 6, pp. 994–1001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. V. Bobryshev and R. S. A. Lord, “Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reaction,” Cardiovascular Research, vol. 37, no. 3, pp. 799–810, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. G. J. Randolph, C. Jakubzick, and C. Qu, “Antigen presentation by monocytes and monocyte-derived cells,” Current Opinion in Immunology, vol. 20, no. 1, pp. 52–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. J. Randolph, J. Ochando, and S. Partida-Sánchez, “Migration of dendritic cell subsets and their precursors,” Annual Review of Immunology, vol. 26, pp. 293–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Steinman and H. Hemmi, “Dendritic cells: translating innate to adaptive immunity,” Current Topics in Microbiology and Immunology, vol. 311, pp. 17–58, 2006. View at Scopus
  28. V. Angeli, J. Llodrá, J. X. Rong et al., “Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization,” Immunity, vol. 21, no. 4, pp. 561–574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Hermansson, D. F. J. Ketelhuth, D. Strodthoff et al., “Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis,” Journal of Experimental Medicine, vol. 207, no. 5, pp. 1081–1093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. R. S. Packard, E. Maganto-García, I. Gotsman, I. Tabas, P. Libby, and A. H. Lichtman, “CD11c+ dendritic cells maintain antigen processing, presentation capabilities, and CD4+ T-Cell priming efficacy under hypercholesterolemic conditions associated with atherosclerosis,” Circulation Research, vol. 103, no. 9, pp. 965–973, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Mallat, H. Ait-Oufella, and A. Tedgui, “Regulatory T cell responses: potential role in the control of atherosclerosis,” Current Opinion in Lipidology, vol. 16, no. 5, pp. 518–524, 2005. View at Scopus
  32. J. Frostegård, A. K. Ulfgren, P. Nyberg et al., “Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines,” Atherosclerosis, vol. 145, no. 1, pp. 33–43, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Daugherty, E. Puré, D. Delfel-Butteiger et al., “The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/- mice,” Journal of Clinical Investigation, vol. 100, no. 6, pp. 1575–1580, 1997. View at Scopus
  34. X. Zhou, A. Nicoletti, R. Elhage, and G. K. Hansson, “Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice,” Circulation, vol. 102, no. 24, pp. 2919–2922, 2000. View at Scopus
  35. S. Stemme, B. Faber, J. Holm, O. Wiklund, J. L. Witztum, and G. K. Hansson, “T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 3893–3897, 1995. View at Scopus
  36. S. Schulte, G. K. Sukhova, and P. Libby, “Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis,” American Journal of Pathology, vol. 172, no. 6, pp. 1500–1508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. H. von der Thüsen, J. Kuiper, T. J. C. van Berkel, and E. A. L. Biessen, “Interleukins in atherosclerosis: molecular pathways and therapeutic potential,” Pharmacological Reviews, vol. 55, no. 1, pp. 133–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Huber, P. Sakkinen, C. David, M. K. Newell, and R. P. Tracy, “T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia,” Circulation, vol. 103, no. 21, pp. 2610–2616, 2001. View at Scopus
  39. O. J. de Boer, J. J. van der Meer, P. Teeling, C. M. van der Loos, and A. C. van der Wal, “Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions,” PloS one, vol. 2, no. 1, article e779, 2007. View at Scopus
  40. H. Ait-Oufella, B. L. Salomon, S. Potteaux et al., “Natural regulatory T cells control the development of atherosclerosis in mice,” Nature Medicine, vol. 12, no. 2, pp. 178–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Simionescu, E. Vasile, F. Lupu, G. Popescu, and M. Simionescu, “Prelesional events in atherogenesis: accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit,” American Journal of Pathology, vol. 123, no. 1, pp. 109–125, 1986. View at Scopus
  42. R. de Martin, M. Hoeth, R. Hofer-Warbinek, and J. A. Schmid, “The transcription factor NF-κ B and the regulation of vascular cell function,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 11, pp. E83–E88, 2000. View at Scopus
  43. E. C. Butcher and L. J. Picker, “Lymphocyte homing and homeostasis,” Science, vol. 272, no. 5258, pp. 60–66, 1996. View at Scopus
  44. J. Frostegård, A. Haegerstrand, M. Gidlund, and J. Nilsson, “Biologically modified LDL increases the adhesive properties of endothelial cells,” Atherosclerosis, vol. 90, no. 2-3, pp. 119–126, 1991. View at Publisher · View at Google Scholar · View at Scopus
  45. Q. Nie, J. Fan, S. Haraoka, T. Shimokama, and T. Watanabe, “Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats: implications of the ICAM-1 and LFA-1 pathway in atherogenesis,” Laboratory Investigation, vol. 77, no. 5, pp. 469–482, 1997. View at Scopus
  46. C. L. Ramos, Y. Huo, U. Jung et al., “Direct demonstration of P-selectin- and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice,” Circulation Research, vol. 84, no. 11, pp. 1237–1244, 1999. View at Scopus
  47. Z. M. Dong, S. M. Chapman, A. A. Brown, P. S. Frenette, R. O. Hynes, and D. D. Wagner, “The combined role of P- and E-selectins in atherosclerosis,” Journal of Clinical Investigation, vol. 102, no. 1, pp. 145–152, 1998. View at Scopus
  48. Z. M. Dong, A. A. Brown, and D. D. Wagner, “Prominent role of P-selectin in the development of advanced atherosclerosis in apoE-deficient mice,” Circulation, vol. 101, no. 19, pp. 2290–2295, 2000. View at Scopus
  49. M. A. Gimbrone Jr., T. Nagel, and J. N. Topper, “Biomechanical activation: an emerging paradigm in endothelial adhesion biology,” Journal of Clinical Investigation, vol. 100, no. 11, supplement, pp. S61–S65, 1997. View at Scopus
  50. J. F. Cornhill and M. R. Roach, “A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta,” Atherosclerosis, vol. 23, no. 3, pp. 489–501, 1976. View at Scopus
  51. J. Ando, H. Tsuboi, R. Korenaga et al., “Differential display and cloning of shear stress-responsive messenger RNAs in human endothelial cells,” Biochemical and Biophysical Research Communications, vol. 225, no. 2, pp. 347–351, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Yamawaki, S. Lehoux, and B. C. Berk, “Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo,” Circulation, vol. 108, no. 13, pp. 1619–1625, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. A. C. Doran, N. Meller, and C. A. McNamara, “Role of smooth muscle cells in the initiation and early progression of atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 812–819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Ross and J. A. Glomset, “Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis,” Science, vol. 180, no. 4093, pp. 1332–1339, 1973. View at Scopus
  55. N. A. Pidkovka, O. A. Cherepanova, T. Yoshida et al., “Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro,” Circulation Research, vol. 101, no. 8, pp. 792–801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. E. W. Raines and N. Ferri, “Cytokines affecting endothelial and smooth muscle cells in vascular disease,” Journal of Lipid Research, vol. 46, no. 6, pp. 1081–1092, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. C. A. Singer, S. Salinthone, K. J. Baker, and W. T. Gerthoffer, “Synthesis of immune modulators by smooth muscles,” BioEssays, vol. 26, no. 6, pp. 646–655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Libby, Y. J. Geng, G. K. Sukhova, D. I. Simon, and R. T. Lee, “Molecular determinants of atherosclerotic plaque vulnerability,” Annals of the New York Academy of Sciences, vol. 811, pp. 134–145, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. J. E. Murphy, P. R. Tedbury, S. Homer-Vanniasinkam, J. H. Walker, and S. Ponnambalam, “Biochemistry and cell biology of mammalian scavenger receptors,” Atherosclerosis, vol. 182, no. 1, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. G. M. Chisolm III and Y. C. Chai, “Regulation of cell growth by oxidized LDL,” Free Radical Biology and Medicine, vol. 28, no. 12, pp. 1697–1707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. A. W. Orr, N. E. Hastings, B. R. Blackman, and B. R. Wamhoff, “Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis,” Journal of Vascular Research, vol. 47, no. 2, pp. 168–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. C. Chai, P. H. Howe, P. E. DiCorleto, and G. M. Chisolm, “Oxidized low density lipoprotein and lysophosphatidylcholine stimulate cell cycle entry in vascular smooth muscle cells. Evidence for release of fibroblast growth factor-2,” The Journal of Biological Chemistry, vol. 271, no. 30, pp. 17791–17797, 1996. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Pei, Y. Wang, T. Miyoshi et al., “Direct evidence for a crucial role of the arterial wall in control of atherosclerosis susceptibility,” Circulation, vol. 114, no. 22, pp. 2382–2389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Miyoshi, J. Tian, A. H. Matsumoto, and W. Shi, “Differential response of vascular smooth muscle cells to oxidized LDL in mouse strains with different atherosclerosis susceptibility,” Atherosclerosis, vol. 189, no. 1, pp. 99–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. J. A. Langer, E. C. Cutrone, and S. Kotenko, “The Class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions,” Cytokine and Growth Factor Reviews, vol. 15, no. 1, pp. 33–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Tedgui and Z. Mallat, “Cytokines in atherosclerosis: pathogenic and regulatory pathways,” Physiological Reviews, vol. 86, no. 2, pp. 515–581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Parrish-Novak, W. Xu, T. Brender et al., “Interleukins 19, 20, and 24 signal through two distinct receptor complexes: differences in receptor-ligand interactions mediate unique biological functions,” The Journal of Biological Chemistry, vol. 277, no. 49, pp. 47517–47523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Paukku and O. Silvennoinen, “STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5,” Cytokine and Growth Factor Reviews, vol. 15, no. 6, pp. 435–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Brand, S. Page, A. K. Walli, D. Neumeier, and P. A. Baeuerle, “Role of nuclear factor-κB in atherogenesis,” Experimental Physiology, vol. 82, no. 2, pp. 297–304, 1997. View at Scopus
  70. J. Tang and E. W. Raines, “Are suppressors of cytokine signaling proteins recently identified in atherosclerosis possible therapeutic targets?” Trends in Cardiovascular Medicine, vol. 15, no. 7, pp. 243–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Ait-Oufella, S. Taleb, Z. Mallat, and A. Tedgui, “Recent advances on the role of cytokines in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 5, pp. 969–979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S. C. Whitman, P. Ravisankar, and A. Daugherty, “IFN-γ deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E-/- mice,” Journal of Interferon and Cytokine Research, vol. 22, no. 6, pp. 661–670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Gupta, A. M. Pablo, X. C. Jiang, N. Wang, A. R. Tall, and C. Schindler, “IFN-γ, potentiates atherosclerosis in ApoE knock-out mice,” Journal of Clinical Investigation, vol. 99, no. 11, pp. 2752–2761, 1997. View at Scopus
  74. S. C. Whitman, P. Ravisankar, H. Elam, and A. Daugherty, “Exogenous interferon-γ enhances atherosclerosis in apolipoprotein E-/- mice,” American Journal of Pathology, vol. 157, no. 6, pp. 1819–1824, 2000. View at Scopus
  75. M. L. Alfaro Leon and S. H. Zuckerman, “Gamma interferon: a central mediator in atherosclerosis,” Inflammation Research, vol. 54, no. 10, pp. 395–411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. S. C. Whitman, P. Ravisankar, and A. Daugherty, “Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-gamma,” Circulation Research, vol. 90, no. 2, pp. E34–E38, 2002. View at Scopus
  77. T. Skoog, W. Dichtl, S. Boquist et al., “Plasma tumour necrosis factor-α and early carotid atherosclerosis in healthy middle-aged men,” European Heart Journal, vol. 23, no. 5, pp. 376–383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. K. J. Woollard, A. Suhartoyo, E. E. Harris et al., “Pathophysiological levels of soluble P-selectin mediate adhesion of leukocytes to the endothelium through mac-1 activation,” Circulation Research, vol. 103, no. 10, pp. 1128–1138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. S. Galis, M. Muszynski, G. K. Sukhova, E. Simon-Morrissey, and P. Libby, “Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions,” Annals of the New York Academy of Sciences, vol. 748, pp. 501–507, 1995. View at Scopus
  80. M. B. Taubman, J. T. Fallon, A. D. Schecter et al., “Tissue factor in the pathogenesis of atherosclerosis,” Thrombosis and Haemostasis, vol. 78, no. 1, pp. 200–204, 1997. View at Scopus
  81. H. Ohta, H. Wada, T. Niwa et al., “Disruption of tumor necrosis factor-α gene diminishes the development of atherosclerosis in ApoE-deficient mice,” Atherosclerosis, vol. 180, no. 1, pp. 11–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Canault, F. Peiretti, C. Mueller et al., “Exclusive expression of transmembrane TNF-α in mice reduces the inflammatory response in early lipid lesions of aortic sinus,” Atherosclerosis, vol. 172, no. 2, pp. 211–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. C. A. Dinarello, “Interleukin-1,” Cytokine and Growth Factor Reviews, vol. 8, no. 4, pp. 253–265, 1997. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Suzuki, K. Shibano, M. Okane et al., “Interferon-α modulates messenger RNA levels of c-sis (PDGF-B chain), PDGF-A chain, and IL-1β genes in human vascular endothelial cells,” American Journal of Pathology, vol. 134, no. 1, pp. 35–43, 1989. View at Scopus
  85. M. P. Bevilacqua, J. S. Pober, M. E. Wheeler, R. S. Cotran, and M. A. Gimbrone Jr., “Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines,” Journal of Clinical Investigation, vol. 76, no. 5, pp. 2003–2011, 1985. View at Scopus
  86. R. Elhage, A. Maret, M. T. Pieraggi, J. C. Thiers, J. F. Arnal, and F. Bayard, “Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice,” Circulation, vol. 97, no. 3, pp. 242–244, 1998. View at Scopus
  87. F. Merhi-Soussi, B. R. Kwak, D. Magne et al., “Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice,” Cardiovascular Research, vol. 66, no. 3, pp. 583–593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Kirii, T. Niwa, Y. Yamada et al., “Lack of interleukin-1β decreases the severity of atherosclerosis in apoE-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 4, pp. 656–660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. S. A. Huber, P. Sakkinen, D. Conze, N. Hardin, and R. Tracy, “Interleukin-6 exacerbates early atherosclerosis in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 10, pp. 2364–2367, 1999. View at Scopus
  90. B. Schieffer, T. Selle, A. Hilfiker et al., “Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis,” Circulation, vol. 110, no. 22, pp. 3493–3500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. T. J. Reape and P. H. E. Groot, “Chemokines and atherosclerosis,” Atherosclerosis, vol. 147, no. 2, pp. 213–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. T. B. Martins, J. L. Anderson, J. B. Muhlestein et al., “Risk factor analysis of plasma cytokines in patients with coronary artery disease by a multiplexed fluorescent immunoassay,” American Journal of Clinical Pathology, vol. 125, no. 6, pp. 906–913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. R. E. Gerszten, E. A. Garcia-Zepeda, Y. C. Lim et al., “MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions,” Nature, vol. 398, no. 6729, pp. 718–723, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. W. A. Boisvert, R. Santiago, L. K. Curtiss, and R. A. Terkeltaub, “A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor- deficient mice,” Journal of Clinical Investigation, vol. 101, no. 2, pp. 353–363, 1998. View at Scopus
  95. K. Uyemura, L. L. Demer, S. C. Castle et al., “Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis,” Journal of Clinical Investigation, vol. 97, no. 9, pp. 2130–2138, 1996. View at Scopus
  96. X. Zhang, A. Niessner, T. Nakajima et al., “Interleukin 12 induces T-cell recruitment into the atherosclerotic plaque,” Circulation Research, vol. 98, no. 4, pp. 524–531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. T. S. Lee, H. C. Yen, C. C. Pan, and L. Y. Chau, “The role of interleukin 12 in the development of atherosclerosis in apoE-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 3, pp. 734–742, 1999. View at Scopus
  98. P. Davenport and P. G. Tipping, “The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice,” American Journal of Pathology, vol. 163, no. 3, pp. 1117–1125, 2003. View at Scopus
  99. L. Zhao, C. A. Cuff, E. Moss et al., “Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia,” The Journal of Biological Chemistry, vol. 277, no. 38, pp. 35350–35356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Del Vecchio, E. Bajetta, S. Canova et al., “Interleukin-12: biological properties and clinical application,” Clinical Cancer Research, vol. 13, no. 16, pp. 4677–4685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Blankenberg, L. Tiret, C. Bickel et al., “Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina,” Circulation, vol. 106, no. 1, pp. 24–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. C. A. Dinarello, “IL-18: A T(H1)-inducing, proinflammatory cytokine and new member of the IL-1 family,” Journal of Allergy and Clinical Immunology, vol. 103, no. 1, pp. 11–24, 1999. View at Publisher · View at Google Scholar
  103. Z. Mallat, A. Corbaz, A. Scoazec et al., “Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability,” Circulation, vol. 104, no. 14, pp. 1598–1603, 2001. View at Scopus
  104. R. Elhage, J. Jawien, M. Rudling et al., “Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice,” Cardiovascular Research, vol. 59, no. 1, pp. 234–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. Z. Mallat, C. Heymes, J. Ohan, E. Faggin, G. Lesèche, and A. Tedgui, “Expression of interleukin-10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 3, pp. 611–616, 1999. View at Scopus
  106. A. Wakkach, F. Cottrez, and H. Groux, “Can interleukin-10 be used as a true immunoregulatory cytokine?” European Cytokine Network, vol. 11, no. 2, pp. 153–160, 2000. View at Scopus
  107. J. Rajasingh, E. Bord, C. Luedemann et al., “IL-10-induced TNF-alpha mRNA destabilization is mediated via IL-10 suppression of p38 MAP kinase activation and inhibition of HuR expression,” The FASEB Journal, vol. 20, no. 12, pp. 2112–2114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. T. J. Lisinski and M. B. Furie, “Interleukin-10 inhibits proinflammatory activation of endothelium in response to Borrelia burgdorferi or lipopolysaccharide but not interleukin-1β or tumor necrosis factor α,” Journal of Leukocyte Biology, vol. 72, no. 3, pp. 503–511, 2002. View at Scopus
  109. L. J. Pinderski, M. P. Fischbein, G. Subbanagounder et al., “Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes,” Circulation Research, vol. 90, no. 10, pp. 1064–1071, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. J. H. von der Thüsen, J. Kuiper, M. L. Fekkes, P. de Vos, T. J. van Berkel, and E. A. Biessen, “Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr-/- mice,” The FASEB Journal, vol. 15, no. 14, pp. 2730–2732, 2001. View at Scopus
  111. Z. Mallat, S. Besnard, M. Duriez et al., “Protective role of interleukin-10 in atherosclerosis,” Circulation Research, vol. 85, no. 8, pp. e17–e24, 1999. View at Scopus
  112. A. M. Miller, D. Xu, D. L. Asquith et al., “IL-33 reduces the development of atherosclerosis,” Journal of Experimental Medicine, vol. 205, no. 2, pp. 339–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. J. E. McLaren, D. R. Michael, R. C. Salter et al., “IL-33 reduces macrophage foam cell formation,” The Journal of Immunology, vol. 185, no. 2, pp. 1222–1229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. D. J. Grainger, “TGF-β and atherosclerosis in man,” Cardiovascular Research, vol. 74, no. 2, pp. 213–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. D. J. Grainger, P. R. Kemp, J. C. Metcalfe et al., “The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis,” Nature Medicine, vol. 1, no. 1, pp. 74–79, 1995. View at Scopus
  116. D. J. Grainger, “Transforming growth factor β and atherosclerosis: so far, so good for the protective cytokine hypothesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 3, pp. 399–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. M. A. Travis, B. Reizis, A. C. Melton et al., “Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice,” Nature, vol. 449, no. 7160, pp. 361–365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. A. B. Kulkarni, C. G. Huh, D. Becker et al., “Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 770–774, 1993. View at Publisher · View at Google Scholar · View at Scopus
  119. D. J. Grainger, D. E. Mosedale, J. C. Metcalfe, and E. P. Böttinger, “Dietary fat and reduced levels of TGFβ1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions,” Journal of Cell Science, vol. 113, no. 13, pp. 2355–2361, 2000. View at Scopus
  120. Z. Mallat, A. Gojova, C. Marchiol-Fournigault et al., “Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice,” Circulation Research, vol. 89, no. 10, pp. 930–934, 2001. View at Scopus
  121. A. Gojova, V. Brun, B. Esposito et al., “Specific abrogation of transforming growth factor-β signaling in T cells alters atherosclerotic lesion size and composition in mice,” Blood, vol. 102, no. 12, pp. 4052–4058, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. E. Fisman, Y. Adler, and A. Tenenbaum, “Biomarkers in cardiovascular diabetology: interleukins and matrixins,” Advances in Cardiology, vol. 45, pp. 44–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. V. L. King, L. A. Cassis, and A. Daugherty, “Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice,” American Journal of Pathology, vol. 171, no. 6, pp. 2040–2047, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Gallagher, H. Dickensheets, J. Eskdale et al., “Cloning, expression and initial characterisation of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10),” Genes and Immunity, vol. 1, no. 7, pp. 442–450, 2000. View at Scopus
  125. K. Wolk, S. Kunz, K. Asadullah, and R. Sabat, “Cutting edge: immune cells as sources and targets of the IL-10 family members?” The Journal of Immunology, vol. 168, no. 11, pp. 5397–5402, 2002. View at Scopus
  126. H. B. Oral, S. V. Kotenko, M. Yilmaz et al., “Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26,” European The Journal of Immunology, vol. 36, no. 2, pp. 380–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. G. Gallagher, J. Eskdale, W. Jordan et al., “Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses,” International Immunopharmacology, vol. 4, no. 5, pp. 615–626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Jain, K. Gabunia, S. E. Kelemen, T. S. Panetti, and M. V. Autieri, “The anti-inflammatory cytokine interleukin 19 is expressed by and angiogenic for human endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 1, pp. 167–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Tian, L. J. Sommerville, A. Cuneo, S. E. Kelemen, and M. V. Autieri, “Expression and suppressive effects of interleukin-19 on vascular smooth muscle cell pathophysiology and development of intimal hyperplasia,” American Journal of Pathology, vol. 173, no. 3, pp. 901–909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. C. H. Hsing, M. Y. Hsieh, W. Y. Chen, E. Cheung So, B. C. Cheng, and M. S. Chang, “Induction of interleukin-19 and interleukin-22 after cardiac surgery with cardiopulmonary bypass,” Annals of Thoracic Surgery, vol. 81, no. 6, pp. 2196–2201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. C. H. Yeh, B. C. Cheng, C. C. Hsu et al., “Induced interleukin-19 contributes to cell-mediated immunosuppression in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass,” Annals of Thoracic Surgery, vol. 92, no. 4, pp. 1252–1259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. A. A. Cuneo, D. Herrick, and M. V. Autieri, “Il-19 reduces VSMC activation by regulation of mRNA regulatory factor HuR and reduction of mRNA stability,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 4, pp. 647–654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. X. C. Fan and J. A. Steitz, “Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs,” EMBO Journal, vol. 17, no. 12, pp. 3448–3460, 1998. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Gabunia, S. P. Ellison, H. Singh et al., “Interleukin-19 (IL-19) induces heme oxygenase-1 (HO-1) expression and decreases reactive oxygen species in human vascular smooth muscle cells,” The Journal of Biological Chemistry, vol. 287, no. 4, pp. 2477–2484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. K. K. Ray and C. P. Cannon, “The potential relevance of the multiple lipid-independent (pleiotropic) effects of statins in the management of acute coronary syndromes,” Journal of the American College of Cardiology, vol. 46, no. 8, pp. 1425–1433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. T. Collins and M. I. Cybulsky, “NF-κB: pivotal mediator or innocent bystander in atherogenesis?” Journal of Clinical Investigation, vol. 107, no. 3, pp. 255–264, 2001. View at Publisher · View at Google Scholar
  137. S. Ghosh and D. Baltimore, “Activation in vitro of NF-κB by phosphorylation of its inhibitor IκB,” Nature, vol. 344, no. 6267, pp. 678–682, 1990. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Yoshimura, R. Morishita, K. Hayashi et al., “Inhibition of intimal hyperplasia after balloon injury in rat carotid artery model using cis-element “decoy” of nuclear factor-κB binding site as a novel molecular strategy,” Gene Therapy, vol. 8, no. 21, pp. 1635–1642, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. S. E. Francis, N. J. Camp, R. M. Dewberry et al., “Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease,” Circulation, vol. 99, no. 7, pp. 861–866, 1999. View at Scopus
  140. N. J. Olsen and C. M. Stein, “New drugs for rheumatoid arthritis,” The New England Journal of Medicine, vol. 350, no. 21, pp. 2167–2226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. W. Palinski, E. Miller, and J. L. Witztum, “Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 821–825, 1995. View at Publisher · View at Google Scholar · View at Scopus
  142. X. Zhou, G. Caligiuri, A. Hamsten, A. K. Lefvert, and G. K. Hansson, “LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 1, pp. 108–114, 2001. View at Scopus
  143. J. Nilsson, G. K. Hansson, and P. K. Shah, “Immunomodulation of atherosclerosis: implications for vaccine development,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 1, pp. 18–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. K. Y. Chyu, X. Zhao, O. S. Reyes et al., “Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice,” Biochemical and Biophysical Research Communications, vol. 338, no. 4, pp. 1982–1989, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Belghith, J. A. Bluestone, S. Barriot, J. Mégret, J. F. Bach, and L. Chatenoud, “TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes,” Nature Medicine, vol. 9, no. 9, pp. 1202–1208, 2003. View at Publisher · View at Google Scholar · View at Scopus