About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2013 (2013), Article ID 205431, 10 pages
http://dx.doi.org/10.1155/2013/205431
Research Article

Cytomorphological and Cytochemical Identification of Microglia

Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata (IISER-K), Mohanpur Campus, P.O. BCKV Campus Main Office, Mohanpur West Bengal, Nadia, Mohanpur 741252, India

Received 7 May 2013; Accepted 18 July 2013

Academic Editors: R. El Ridi and S. M. Varga

Copyright © 2013 Subhajit Das Sarma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Microglia is one of the major resident immune cells in the central nervous system and is considered to be the key cellular mediator of neuroinflammatory processes. Identification of different Microglial states of activation by morphologic means has been one of the major challenges in the field of neurobiology of diseases. Therefore, microglial biology demands techniques to identify differing stages of microglia in different neuroanatomic locations as well as understanding the role of Microglia in different Neurological diseases. This present study is aimed towards summarizing the literature and for understanding the progress made in different Cytomorphological and Cytochemical techniques of identifying Microglia. This study also review recently used Immunohistochemistry techniques, along with Ultrastructural studies determining different morphological features of resting to activated phagocytic Microglia in a viral induced experimental animal model of neuroinflammation. Results revealed that chronic Microglial activation is considered to be an important component of neuronal dysfunction, injury, and loss (and hence to disease progression). Thus, Microglial research with special emphasis on identification of different activation states of Microglia has gradually become significant.