About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2013 (2013), Article ID 205431, 10 pages
http://dx.doi.org/10.1155/2013/205431
Research Article

Cytomorphological and Cytochemical Identification of Microglia

Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata (IISER-K), Mohanpur Campus, P.O. BCKV Campus Main Office, Mohanpur West Bengal, Nadia, Mohanpur 741252, India

Received 7 May 2013; Accepted 18 July 2013

Academic Editors: R. El Ridi and S. M. Varga

Copyright © 2013 Subhajit Das Sarma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. D. Barron, “The microglial cell. A historical review,” Journal of the Neurological Sciences, vol. 134, no. 1, pp. 57–68, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Cuadros and J. Navascués, “The origin and differentiation of microglial cells during development,” Progress in Neurobiology, vol. 56, no. 2, pp. 173–189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Cuadros, A. Moujahid, A. Quesada, and J. Navascues, “Development of microglia in the quail optic tectum,” Journal of Comparative Neurology, vol. 348, no. 2, pp. 207–224, 1994. View at Scopus
  4. D. M. Reid, V. H. Perry, P.-B. Andersson, and S. Gordon, “Mitosis and apoptosis of microglia in vivo induced by an anti-CR3 antibody which crosses the blood-brain barrier,” Neuroscience, vol. 56, no. 3, pp. 529–533, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. R. B. Rock, G. Gekker, S. Hu et al., “Role of microglia in central nervous system infections,” Clinical Microbiology Reviews, vol. 17, no. 4, pp. 942–964, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. J. Lawson, V. H. Perry, and S. Gordon, “Turnover of resident microglia in the normal adult mouse brain,” Neuroscience, vol. 48, no. 2, pp. 405–415, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Matsumoto, K. Ohmori, and M. Fujiwara, “Immune regulation by brain cells in the central nervous system: microglia but not astrocytes present myelin basic protein to encephalitogenic T cells under in vivo-mimicking conditions,” Immunology, vol. 76, no. 2, pp. 209–216, 1992. View at Scopus
  8. E. Lavi, D. H. Gilden, and Z. Wroblewska, “Experimental demyelination produced by the A59 strain of mouse hepatitis virus,” Neurology, vol. 34, no. 5, pp. 597–603, 1984. View at Scopus
  9. J. D. Sarma, L. Fu, S. T. Hingley, and E. Lavi, “Mouse hepatitis virus type-2 infection in mice: an experimental model system of acute meningitis and hepatitis,” Experimental and Molecular Pathology, vol. 71, no. 1, pp. 1–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Das Sarma, L. Fu, S. T. Hingley, M. M. C. Lai, and E. Lavi, “Sequence analysis of the S gene of recombinant MHV-2/A59 coronaviruses reveals three candidate mutations associated with demyelination and hepatitis,” Journal of NeuroVirology, vol. 7, no. 5, pp. 432–436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Chatterjee, K. Biswas, S. Nag, S. G. Ramachandra, and J. D. Sarma, “Microglia play a major role in direct viral-induced demyelination,” Clinical and Developmental Immunology, vol. 2013, Article ID 510396, 12 pages, 2013. View at Publisher · View at Google Scholar
  12. J. Das Sarma, L. C. Kenyon, S. T. Hingley, and K. S. Shindler, “Mechanisms of primary axonal damage in a viral model of multiple sclerosis,” Journal of Neuroscience, vol. 29, no. 33, pp. 10272–10280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Penfield, “A method of staining oligodendroglia and microglia (combined method),” The American Journal of Pathology, vol. 4, no. 2, pp. 153–157, 1928.
  14. D. S. Russell, “Intravital staining of microglia with trypan blue,” The American Journal of Pathology, vol. 5, no. 5, pp. 451–458, 1929.
  15. M. Gencic and M. Oehmichen, “A modification of microglia impregnation,” Microscopica Acta, vol. 82, no. 3, pp. 201–206, 1979. View at Scopus
  16. T. Scott, “A silver impregnation method for reactive microglia in 1 μm epoxy sections,” Acta Neuropathologica, vol. 46, no. 1-2, pp. 155–158, 1979. View at Scopus
  17. H. Kettenmann, U. K. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiological Reviews, vol. 91, no. 2, pp. 461–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Oehmichen, H. Wiethoelter, and M. Gencic, “Cytochemical markers for mononuclear phagocytes as demonstrated in reactive microglia and globoid cells,” Acta Histochemica, vol. 66, no. 2, pp. 243–252, 1980. View at Scopus
  19. K. S. Shindler, L. C. Kenyon, M. Dutt, S. T. Hingley, and J. Das Sarma, “Experimental optic neuritis induced by a demyelinating strain of mouse hepatitis virus,” Journal of Virology, vol. 82, no. 17, pp. 8882–8886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Shindler, D. Chatterjee, K. Biswas et al., “Macrophage-mediated optic neuritis induced by retrograde axonal transport of spike gene recombinant mouse hepatitis virus,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 6, pp. 470–480, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kanazawa, K. Ohsawa, Y. Sasaki, S. Kohsaka, and Y. Imai, “Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-γ-dependent pathway,” Journal of Biological Chemistry, vol. 277, no. 22, pp. 20026–20032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. G. W. Simmons, W. W. Pong, R. J. Emnett et al., “Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 1, pp. 51–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Damier, E. C. Hirsch, P. Zhang, Y. Agid, and F. Javoy-Agid, “Glutathione peroxidase, glial cells and Parkinson's disease,” Neuroscience, vol. 52, no. 1, pp. 1–6, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Cagnin, D. J. Brooks, A. M. Kennedy et al., “In-vivo measurement of activated microglia in dementia,” The Lancet, vol. 358, no. 9280, pp. 461–467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Akiyama, S. Barger, S. Barnum et al., “Inflammation and Alzheimer's disease,” Neurobiology of Aging, vol. 21, no. 3, pp. 383–421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, “Mechanisms Underlying Inflammation in Neurodegeneration,” Cell, vol. 140, no. 6, pp. 918–934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Wyss-Coray, J. D. Loike, T. C. Brionne et al., “Adult mouse astrocytes degrade amyloid-β in vitro and in situ,” Nature Medicine, vol. 9, no. 4, pp. 453–457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. Block and J. S. Hong, “Chronic microglial activation and progressive dopaminergic neurotoxicity,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1127–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. P. L. McGeer and E. G. McGeer, “Glial reactions in Parkinson's disease,” Movement Disorders, vol. 23, no. 4, pp. 474–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Nagatsu and M. Sawada, “Inflammatory process in Parkinson's disease: role for cytokines,” Current Pharmaceutical Design, vol. 11, no. 8, pp. 999–1016, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988. View at Scopus
  32. P. L. McGeer and E. G. McGeer, “Inflammatory processes in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 26, no. 4, pp. 459–470, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Cartier, O. Hartley, M. Dubois-Dauphin, and K.-H. Krause, “Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases,” Brain Research Reviews, vol. 48, no. 1, pp. 16–42, 2005. View at Publisher · View at Google Scholar · View at Scopus