About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2013 (2013), Article ID 208087, 15 pages
http://dx.doi.org/10.1155/2013/208087
Research Article

Effectiveness of Alkali-Acid Treatment in Enhancement the Adsorption Capacity for Rice Straw: The Removal of Methylene Blue Dye

Physical Chemistry Department, Laboratory of Surface Chemistry and Catalysis, National Research Center, Dokki, Cairo 12622, Egypt

Received 13 February 2013; Accepted 4 March 2013

Academic Editors: A. Gil-Villegas, H. Pal, and T. Panczyk

Copyright © 2013 Nady A. Fathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO/UNICEF, Global Water Supply and Sanitation Assessment Report 2000, WHO, Geneva, Switzerland, 2000.
  2. M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, “Adsorption of methylene blue on low-cost adsorbents: a review,” Journal of Hazardous Materials, vol. 177, no. 1-3, pp. 70–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. I. M. Banat, P. Nigam, D. Singh, and R. Marchant, “Microbial decolorization of textile-dye-containing effluents: a review,” Bioresource Technology, vol. 58, no. 3, pp. 217–227, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. C. I. Pearce, J. R. Lloyd, and J. T. Guthrie, “The removal of colour from textile wastewater using whole bacterial cells: a review,” Dyes and Pigments, vol. 58, no. 3, pp. 179–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. G. McMullan, C. Meehan, A. Conneely et al., “Microbial decolourisation and degradation of textile dyes,” Applied Microbiology and Biotechnology, vol. 56, no. 1-2, pp. 81–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Crini, “Non-conventional low-cost adsorbents for dye removal: a review,” Bioresource Technology, vol. 97, no. 9, pp. 1061–1085, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Ghosh and K. G. Bhattacharyya, “Adsorption of methylene blue on kaolinite,” Applied Clay Science, vol. 20, no. 6, pp. 295–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, “Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies,” Journal of Hazardous Materials, vol. 154, no. 1-3, pp. 337–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. C. Bansal and M. Goyal, Activated Carbon Adsorption, Taylor and Francis, London, UK, 2005.
  10. Q. Sun and L. Yang, “The adsorption of basic dyes from aqueous solution on modified peat-resin particle,” Water Research, vol. 37, no. 7, pp. 1535–1544, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. S. Ho and G. McKay, “Sorption of dyes and copper ions onto biosorbents,” Process Biochemistry, vol. 38, no. 7, pp. 1047–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Mohan, K. P. Singh, G. Singh, and K. Kumar, “Removal of dyes from wastewater using flyash, a low-cost adsorbent,” Industrial and Engineering Chemistry Research, vol. 41, no. 15, pp. 3688–3695, 2002. View at Scopus
  13. A. El-Maghraby and H. A. El Deeb, “Removal of a basic dye from aqueous solution by adsorption using rice hulls,” Global NEST Journal, vol. 13, no. 1, pp. 90–98, 2011.
  14. R. Gong, Y. Jin, J. Chen, Y. Hu, and J. Sun, “Removal of basic dyes from aqueous solution by sorption on phosphoric acid modified rice straw,” Dyes and Pigments, vol. 73, no. 3, pp. 332–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Gong, Y. Jin, F. Chen, J. Chen, and Z. Liu, “Enhanced malachite green removal from aqueous solution by citric acid modified rice straw,” Journal of Hazardous Materials, vol. 137, no. 2, pp. 865–870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Gong, K. Zhong, Y. Hu, J. Chen, and G. Zhu, “Thermochemical esterifying citric acid onto lignocellulose for enhancing methylene blue sorption capacity of rice straw,” Journal of Environmental Management, vol. 88, no. 4, pp. 875–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Chakraborty, S. Chowdhury, and P. D. Saha, “Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk,” Carbohydrate Polymers, vol. 86, pp. 1533–1541, 2011.
  18. B. S. Ndazi, S. Karlsson, J. V. Tesha, and C. W. Nyahumwa, “Chemical and physical modifications of rice husks for use as composite panels,” Composites Part A, vol. 38, no. 3, pp. 925–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. W. E. Marshall, L. H. Wartelle, D. E. Boler, M. M. Johns, and C. A. Toles, “Enhanced metal adsorption by soybean hulls modified with citric acid,” Bioresource Technology, vol. 69, no. 3, pp. 263–268, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. C. A. Leon y Leon and L. R. Radovic, “Interfacial chemistry and electrochemistry of carbon surfaces,” in Chemistry and Physics of Carbon, P. A. Thrower, Ed., vol. 24, pp. 213–310, Marcel Dekker, 1994.
  21. NORIT Testing Methods, Special publication, Norit N.V., Holland.
  22. G. McKay and M. J. Bino, “Fixed bed adsorption for the removal of pollutants from water,” Environmental Pollution, vol. 66, no. 1, pp. 33–53, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. G. McKay, M. J. Bino, and A. R. Altamemi, “The adsorption of various pollutants from aqueous solutions on to activated carbon,” Water Research, vol. 19, no. 4, pp. 491–495, 1985. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. M. Vargas, A. L. Cazetta, M. H. Kunita, T. L. Silva, and V. C. Almeida, “Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models,” Chemical Engineering Journal, vol. 168, no. 2, pp. 722–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Lagergren, “Zur theorie der sogenannten adsorption geloster stoffe. 591. Kungliga Svenska Vetenskapsakademiens,” Handlingar, vol. 24, pp. 1–39, 1898.
  27. Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chemical Engineering Journal, vol. 70, no. 2, pp. 115–124, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Morris and W. J. Weber, “Kinetics of adsorption on carbon from solution,” Journal of the Sanitary Engineering Division, vol. 89, no. 2, pp. 31–39, 1963.
  29. D. J. Hills and D. W. Roberts, “Anaerobic digestion of dairy manure and field crop residues,” Agricultural Wastes, vol. 3, no. 3, pp. 179–189, 1981. View at Publisher · View at Google Scholar · View at Scopus
  30. R. E. Wing, “Starch citrate: preparation and ion exchange properties,” Starch, vol. 48, no. 7-8, pp. 275–279, 1996. View at Scopus
  31. J. S. Noh and J. A. Schwarz, “Estimation of the point of zero charge of simple oxides by mass titration,” Journal of Colloid And Interface Science, vol. 130, no. 1, pp. 157–164, 1989. View at Scopus
  32. L. R. Radovic and F. Rodriguez-Reinoso, “Carbon materials in catalysis,” in Chemistry and Physics of Carbon, P. A. Thrower, Ed., vol. 25, pp. 243–358, Marcel Dekker, New York, NY, USA, 1997.
  33. L. H. Wartelle and W. E. Marshall, “Citric acid modified agricultural by-products as copper ion adsorbents,” Advances in Environmental Research, vol. 4, no. 1, pp. 1–7, 2000. View at Scopus
  34. E. M. Ciannamea, P. M. Stefani, and R. A. Ruseckaite, “Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives,” Bioresource Technology, vol. 101, no. 2, pp. 818–825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D. J. Malik, V. Strelko Jr., M. Streat, and A. M. Puziy, “Characterisation of novel modified active carbons and marine algal biomass for the selective adsorption of lead,” Water Research, vol. 36, no. 6, pp. 1527–1538, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, and J. M. D. Tascón, “Synthetic carbons activated with phosphoric—acid I. Surface chemistry and ion binding properties,” Carbon, vol. 40, no. 9, pp. 1493–1505, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. N. K. Amin, “Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith,” Desalination, vol. 223, no. 1-3, pp. 152–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Rodríguez, J. García, G. Ovejero, and M. Mestanza, “Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 1311–1320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Wang and Z. H. Zhu, “Effects of acidic treatment of activated carbons on dye adsorption,” Dyes and Pigments, vol. 75, no. 2, pp. 306–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. T. Ong, W. N. Lee, P. S. Keng, S. L. Lee, Y. T. Hung, and S. T. Ha, “Equilibrium studies and kinetics mechanism for the removal of basic and reactive dyes in both single and binary systems using EDTA modified rice husk,” International Journal of Physical Sciences, vol. 5, no. 5, pp. 582–595, 2010. View at Scopus
  41. B. S. Inbaraj, K. Selvarani, and N. Sulochana, “Evaluation of a carbonaceous sorbent prepared from Pearl Millet Husk for its removal of basic dyes,” Journal of Scientific and Industrial Research, vol. 61, no. 11, pp. 971–978, 2002. View at Scopus
  42. B. H. Hameed, R. R. Krishni, and S. A. Sata, “A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 305–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Lata, V. K. Garg, and R. K. Gupta, “Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus: an agricultural waste,” Dyes and Pigments, vol. 74, no. 3, pp. 653–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Vadivelan and K. V. Kumar, “Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk,” Journal of Colloid and Interface Science, vol. 286, no. 1, pp. 90–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. S. Sajab, C. H. Chia, S. Zakaria et al., “Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution,” Bioresource Technology, vol. 102, no. 15, pp. 7237–7243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. C. A. Başar, “Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot,” Journal of Hazardous Materials, vol. 135, no. 1-3, pp. 232–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Ferrero, “Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust,” Journal of Hazardous Materials, vol. 142, no. 1-2, pp. 144–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. I. D. Mall, V. C. Srivastava, N. K. Agarwal, and I. M. Mishra, “Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses,” Chemosphere, vol. 61, no. 4, pp. 492–501, 2005. View at Publisher · View at Google Scholar · View at Scopus