About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 209518, 9 pages
http://dx.doi.org/10.1155/2013/209518
Research Article

Spectrophotometric Determination of Some Non-Sedating Antihistamines Using Erythrosine B

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Received 9 April 2013; Accepted 12 May 2013

Academic Editors: A. Garcia Asuero, E. T. Haupt, B. K. Jena, J. B. MacMillan, and A. Senthil Kumar

Copyright © 2013 Michael E. El-Kommos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. M. Sweetman, The Complete Drug Reference, Pharmaceutical Press, London, UK, 36th edition, 2009.
  2. F. Simons, R. Estelle, and K. J. Simons, “Histamine and H1-antihistamines: celebrating a century of progress,” Journal of Allergy and Clinical Immunology, vol. 128, no. 6, pp. 1139–1150, 2011. View at Google Scholar
  3. R. K. Trivedi, M. C. Patel, and S. B. Jadhav, “A rapid, stability indicating RP-UPLC method for simultaneous determination of ambroxol hydrochloride, cetirizine hydrochloride and antimicrobial preservatives in liquid pharmaceutical formulation,” Scientia Pharmaceutica, vol. 79, no. 3, pp. 525–543, 2011. View at Google Scholar
  4. G. M. Hadad, S. Emara, and W. M. M. Mahmoud, “Development and validation of a stability-indicating RP-HPLC method for the determination of paracetamol with dantrolene or/and cetirizine and pseudoephedrine in two pharmaceutical dosage forms,” Talanta, vol. 79, no. 5, pp. 1360–1367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Konieczna, A. Plenis, I. Olędzka, P. Kowalski, and T. Bączek, “Rapid RP-LC method with fluorescence detection for analysis of fexofenadine in human plasma,” Chromatographia, vol. 71, no. 11-12, pp. 1081–1086, 2010. View at Google Scholar
  6. A. Plenis, L. Konieczn, I. Olędzka, and P. Kowalski, “Rapid analysis of loratadine in human serum by high-performance liquid chromatography with fluorescence detection,” Acta Chromatographica, vol. 22, no. 1, pp. 69–79, 2010. View at Google Scholar
  7. F. Ibrahim, M. K. Sharaf El- Din, M. I. Eid, and M. E. K. Wahba, “Validated stability indicating liquid chromatographic determination of ebastine in pharmaceuticals after pre column derivatization: application to tablets and content uniformity testing,” Chemistry Central Journal, vol. 5, no. 1, article 24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. M. Maher, M. A. Sultan, and I. V. Olah, “Development of validated stability-indicating chromatographic method for the determination of fexofenadine hydrochloride and its related impurities in pharmaceutical tablets,” Chemistry Central Journal, vol. 5, article 76, no. 1, 2011. View at Google Scholar
  9. C. Julien-Larose, M. Guerret, D. Lavene, and J. R. Kiechel, “Quantification of ketotifen and its metabolites in human plasma by gas chromatography mass spectrometry,” Biomedical Mass Spectrometry, vol. 10, no. 3, pp. 136–142, 1983. View at Google Scholar · View at Scopus
  10. H. Maurer and K. Pfleger, “Identification and differentiation of alkylamine antihistamines and their metabolites in urine by computerized gas chromatography-mass spectrometry,” Journal of Chromatography, vol. 430, no. 1, pp. 31–41, 1988. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Johnson, J. Christensen, and C. C. Lin, “Sensitive gas-liquid chromatographic method for the determination of loratadine and its major active metabolite, descarboethoxyloratadine, in human plasma using a nitrogen-phosphorus detector,” Journal of Chromatography B, vol. 657, no. 1, pp. 125–131, 1994. View at Google Scholar
  12. H. J. Leis and E. Malle, “Deuterium-labelling and quantitative measurement of Ketotifen in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry,” Biological Mass Spectrometry, vol. 20, no. 8, pp. 467–470, 1991. View at Google Scholar
  13. R. H. Patil, R. N. Hegde, and S. T. Nandibewoor, “Electro-oxidation and determination of antihistamine drug, cetirizine dihydrochloride at glassy carbon electrode modified with multi-walled carbon nanotubes,” Colloids and Surfaces B, vol. 83, no. 1, pp. 133–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Rachidi, K. Digua, P. Hubert, M. A. Faouzi, Y. Cherrah, and A. Bouklouze, “Analytical validation of potentiometric method for cetirizinium ion,” Analytical Letters, vol. 39, no. 8, pp. 1699–1708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. Aleksi, V. I. Radulovi, V. P. Kapetanovi, and V. M. Savi, “The possibility of simultaneous voltammetric determination of desloratadine and 3-Hydroxydesloratadine,” Acta Chimica Slovenica, vol. 57, no. 3, pp. 686–692, 2010. View at Google Scholar
  16. M. M. Ghoneim, M. M. Mabrouk, A. M. Hassanein, and A. Tawfik, “Polarographic behaviour of loratadine and its direct determination in pharmaceutical formulation and human plasma by cathodic adsorptive stripping voltammetry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 5-6, pp. 933–939, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. D. Güngör, “Electrooxidation of cetirizine dihydrochloride with a glassy carbon electrode,” Pharmazie, vol. 59, no. 12, pp. 929–933, 2004. View at Google Scholar
  18. H. Mahgoub, A. A. Gazy, F. A. El-Yazbi, M. A. El-Sayed, and R. M. Youssef, “Spectrophotometric determination of binary mixtures of pseudoephedrine with some histamine H1-receptor antagonists using derivative ratio spectrum method,” Journal of Pharmaceutical and Biomedical Analysis, vol. 31, no. 4, pp. 801–809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. Sharaf El-Din, F. A. Ibrahim, M. I. Eid, and M. E. K. Wahba, “First and second derivative synchronous fluorescence and spectrophotometric spectroscopy for the simultaneous determination of fexofenadine hydrochloride in presence of its degradation products. Application to stability studies,” Acta Chimica Slovenica, vol. 58, no. 2, pp. 278–287, 2011. View at Google Scholar · View at Scopus
  20. N. El-Kousy and L. I. Bebawy, “Determination of some antihistaminic drugs by atomic absorption spectrometry and colorimetric methods,” Journal of Pharmaceutical and Biomedical Analysis, vol. 20, no. 4, pp. 671–679, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. C. S. P. Sastry and P. Y. Naidu, “Spectrophotometric estimation of Ketotifen fumarate in pharmaceutical formulations,” Mikrochimica Acta, vol. 127, no. 3–4, pp. 219–223, 1997. View at Google Scholar · View at Scopus
  22. A. A. Gazy, H. Mahgoub, F. A. El-Yazbi, M. A. El-Sayed, and R. M. Youssef, “Determination of some histamine H1-receptor antagonists in dosage forms,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 3, pp. 859–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. T. U. Sevgi, “Extractive spectrophotometric determination of cetirizine dihydrochloride in pure and pharmaceutical preparations,” Journal of Food and Drug Analysis, vol. 18, no. 6, pp. 440–446, 2010. View at Google Scholar · View at Scopus
  24. M. K. Sharaf El-Din, F. Ibrahim, M. I. Eid, and M. E. Wahba, “Validated spectroflurimetric determination of some H1 receptor antagonist drugs in pharmaceutical preparations through charge transfer complexation,” Journal of Fluorescence, vol. 22, no. 1, pp. 175–191, 2012. View at Google Scholar
  25. M. I. Walash, F. Belal, N. El-Enany, M. Eid, and R. N. El-Shaheny, “Stability-indicating micelle-enhanced spectrofluorimetric method for determination of loratadine and desloratadine in dosage forms,” Luminescence, vol. 26, no. 6, pp. 670–679, 2011. View at Google Scholar
  26. Z. A. Alothman, N. Bukhari, S. Haider, S. M. Wabaidur, and A. A. Alwarthan, “Spectrofluorimetric determination of fexofenadine hydrochloride in pharmaceutical preparation using silver nanoparticles,” Arabian Journal of Chemistry, vol. 3, no. 4, pp. 251–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Ibrahim, M. K. El-Din, M. I. Eid, and M. E. Wahba, “Validated stability-indicating spectrofluorimetric methods for the determination of ebastine in pharmaceutical preparations,” Chemistry Central Journal, vol. 5, article 11, 2011. View at Google Scholar
  28. P. R. Tomás, M. L. Carmen, T. Virginia, and S. Ciriaco, “Automatic extraction-spectrofluorimetric method for the determination of imipramine in pharmaceutical preparations,” Analyst, vol. 120, no. 4, pp. 1103–1106, 1995. View at Google Scholar
  29. T. M. Wood, “Cellulolytic enzyme system of Trichoderma koningii. Separation of components attacking native cotton,” Biochemical Journal, vol. 109, no. 2, pp. 217–227, 1968. View at Google Scholar · View at Scopus
  30. Validation of Analytical Procedures, Methodology ICH Harmonized Tripartite Guideline, Having Reached Step 4 of the ICH Process at the ICH Steering Committee meeting, 1996.
  31. C. Y. Huang, “Determination of binding stoichiometry by the continuous variation method: the job plot,” Methods in Enzymology, vol. 87, pp. 509–525, 1982. View at Publisher · View at Google Scholar · View at Scopus