About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2013 (2013), Article ID 238428, 18 pages
http://dx.doi.org/10.1155/2013/238428
Review Article

Nanoparticles for Brain Drug Delivery

Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy

Received 20 March 2013; Accepted 11 April 2013

Academic Editors: H. Itoh, H. Pant, and M. Seno

Copyright © 2013 Massimo Masserini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Honjo, S. E. Black, and N. P. Verhoeff, “Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade,” Canadian Journal of Neurological Sciences, vol. 39, no. 6, pp. 712–728, 2012.
  2. J. R. Kanwar, B. Sriramoju, and R. K. Kanwar, “Neurological disorders and therapeutics targeted to surmount the blood-brain barrier,” International Journal of Nanomedicine, vol. 7, pp. 3259–3278, 2012.
  3. M. Wahl, A. Unterberg, A. Baethmann, and L. Schilling, “Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema,” Journal of Cerebral Blood Flow and Metabolism, vol. 8, no. 5, pp. 621–634, 1988. View at Scopus
  4. A. G. de Boer and D. D. Breimer, “Cytokines and blood-brain barrier permeability,” Progress in Brain Research, vol. 115, pp. 425–451, 1998. View at Scopus
  5. M. A. Petty and E. H. Lo, “Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation,” Progress in Neurobiology, vol. 68, no. 5, pp. 311–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Kastin, W. Pan, L. M. Maness, and W. A. Banks, “Peptides crossing the blood-brain barrier: some unusual observations,” Brain Research, vol. 848, no. 1-2, pp. 96–100, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. W. M. Pardridge, J. Eisenberg, and J. Yang, “Human blood-brain barrier insulin receptor,” Journal of Neurochemistry, vol. 44, no. 6, pp. 1771–1778, 1985. View at Scopus
  8. Y. Zhang and W. M. Pardridge, “Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin,” Brain Research, vol. 889, no. 1-2, pp. 49–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Santaguida, D. Janigro, M. Hossain, E. Oby, E. Rapp, and L. Cucullo, “Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study,” Brain Research, vol. 1109, no. 1, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Rabanel, V. Aoun, I. Elkin, M. Mokhtar, and P. Hildgen, “Drug-loaded nanocarriers: passive targeting and crossing of biological barriers,” Current Medicinal Chemistry, vol. 19, no. 19, pp. 3070–3102, 2012. View at Publisher · View at Google Scholar
  11. M. A. Bellavance, M. Blanchette, and D. Fortin, “Recent advances in blood-brain barrier disruption as a CNS delivery strategy,” AAPS Journal, vol. 10, no. 1, pp. 166–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. W. M. Pardridge, “Drug transport across the blood-brain barrier,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, no. 11, pp. 1959–1972, 2012.
  13. A. Minn, S. Leclerc, J. M. Heydel et al., “Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier,” Journal of Drug Targeting, vol. 10, no. 4, pp. 285r–296r, 2002. View at Scopus
  14. D. Holmes, “The next big things are tiny,” Lancet Neurology, vol. 12, no. 1, pp. 31–32, 2013. View at Publisher · View at Google Scholar
  15. F. Re, M. Gregori, and M. Masserini, “Nanotechnology for neurodegenerative disorders,” Nanomedicine NBM, vol. 8, supplement 1, pp. S51–S58, 2012.
  16. M. Youns, J. D. Hoheisel, and T. Efferth, “Therapeutic and diagnostic applications of nanoparticles,” Current Drug Targets, vol. 12, no. 3, pp. 357–365, 2011. View at Scopus
  17. K. C. Petkar, S. S. Chavhan, S. Agatonovik-Kustrin, and K. K. Sawant, “Nanostructured materials in drug and gene delivery: a review of the state of the art,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 28, no. 2, pp. 101–164, 2011. View at Scopus
  18. X. Montet, M. Funovics, K. Montet-Abou, R. Weissleder, and L. Josephson, “Multivalent effects of RGD peptides obtained by nanoparticle display,” Journal of Medicinal Chemistry, vol. 49, no. 20, pp. 6087–6093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Provenzale and G. A. Silva, “Uses of nanoparticles for central nervous system imaging and therapy,” American Journal of Neuroradiology, vol. 30, no. 7, pp. 1293–1301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Gabathuler, “Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases,” Neurobiology of Disease, vol. 37, no. 1, pp. 48–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. J. Andersen, S. H. Hashemi, G. Galimberti, F. Re, M. Masserini, and S. M. Moghimi, “The interaction of complement system with abeta-binding liposomes: towards engineering of safer vesicles for the management of Alzheimer's disease,” Journal of Biotechnology, vol. 150, no. 1, pp. S97–S98, 2010.
  22. S. Haque, S. Md, M. I. Alam, J. K. Sahni, J. Ali, and S. Baboota, “Nanostructure-based drug delivery systems for brain targeting,” Drug Development and Industrial Pharmacy, vol. 38, no. 4, pp. 387–411, 2012. View at Publisher · View at Google Scholar
  23. L. Martin-Banderas, M. A. Holgado, J. L. Venero, J. Alvarez-Fuentes, and M. Fernàdez-Aréalo, “Nanostructures for drug delivery to the brain,” Current Medicinal Chemistry, vol. 148, no. 34, pp. 5303–5321, 2011.
  24. M. Budai and M. Szógyi, “Liposomes as drug carrier systems. Preparation, classification and therapeutical advantages of liposomes,” Acta Pharmaceutica Hungarica, vol. 71, no. 1, pp. 114–118, 2001. View at Scopus
  25. F. Lai, A. M. Fadda, and C. Sinico, “Liposomes for brain delivery,” Expert Opinion on Drug Delivery, 2013. View at Publisher · View at Google Scholar
  26. T. Ishii, T. Asai, D. Oyama, et al., “Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506,” FASEB Journal, vol. 27, no. 4, pp. 1362–1370, 2013.
  27. A. Lindqvist, J. Rip, P. J. Gaillard, S. Björkman, and M. Hammarlund-Udenaes, “Enhanced brain delivery of the opioid peptide DAMGO in glutathione PEGylated liposomes: a microdialysis study,” Molecular Pharmacology, 2012. View at Publisher · View at Google Scholar
  28. A. Orthmann, R. Zeisig, R. Süss, D. Lorenz, M. Lemm, and I. Fichtner, “Treatment of experimental brain metastasis with MTO-liposomes: impact of fluidity and LRP-targeting on the therapeutic result,” Pharmaceutical Research, vol. 29, no. 7, pp. 1949–1959, 2012. View at Publisher · View at Google Scholar
  29. M. T. da Cruz, S. Simões, and M. C. de Lima, “Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons,” Experimental Neurology, vol. 187, no. 1, pp. 65–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Artzner, R. Zantl, and J. O. Rädler, “Lipid-DNA and lipid-polyelectrolyte mesophases: structure and exchange kinetics,” Cellular and Molecular Biology, vol. 46, no. 5, pp. 967–978, 2000. View at Scopus
  31. A. Molinari, M. Colone, A. Calcabrini et al., “Cationic liposomes, loaded with m-THPC, in photodynamic therapy for malignant glioma,” Toxicology in Vitro, vol. 21, no. 2, pp. 230–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Obata, G. Ciofani, V. Raffa et al., “Evaluation of cationic liposomes composed of an amino acid-based lipid for neuronal transfection,” Nanomedicine, vol. 6, no. 1, pp. e70–e77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Zhao, J. Chang, X. Fu, et al., “Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats,” Journal of Drug Targeting, vol. 20, no. 5, pp. 416–421, 2012. View at Publisher · View at Google Scholar
  34. I. P. Kaur, R. Bhandari, S. Bhandari, and V. Kakkar, “Potential of solid lipid nanoparticles in brain targeting,” Journal of Controlled Release, vol. 127, no. 2, pp. 97–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Pardeshi, P. Rajput, V. Belgamwar, et al., “Solid lipid based nanocarriers: an overview,” Acta Pharmaceutica, vol. 62, no. 4, pp. 433–472, 2012.
  36. B. Mishra, B. B. Patel, and S. Tiwari, “Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery,” Nanomedicine, vol. 6, no. 1, pp. e9–e24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Blasi, S. Giovagnoli, A. Schoubben, M. Ricci, and C. Rossi, “Solid lipid nanoparticles for targeted brain drug delivery,” Advanced Drug Delivery Reviews, vol. 59, no. 6, pp. 454–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. X. Wang, X. Sun, and Z. R. Zhang, “Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 54, no. 3, pp. 285–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Martins, I. Tho, I. Reimold, et al., “Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies,” International Journal of Pharmaceutics, vol. 439, no. 1-2, pp. 49–62, 2012. View at Publisher · View at Google Scholar
  40. S. Md, M. Ali, S. Baboota, et al., “Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting,” Drug Development and Industrial Pharmacy, 2013. View at Publisher · View at Google Scholar
  41. J. Madan, R. S. Pandey, V. Jain, O. P. Katare, R. Chandra, and A. Katyal, “Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells,” Drug Delivery, vol. 19, no. 8, pp. 378–391, 2012. View at Publisher · View at Google Scholar
  42. X. Zhang, G. Chen, L. Wen, et al., “Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation,” European Journal of Pharmaceutical Sciences, vol. 48, no. 4-5, pp. 595–603, 2013.
  43. Y. E. Choonara, V. Pillay, V. M. K. Ndesendo et al., “Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers,” Colloids and Surfaces B, vol. 87, no. 2, pp. 243–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Pandey and G. K. Khuller, “Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 6, pp. 1146–1152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Hasadsri, J. Kreuter, H. Hattori, T. Iwasaki, and J. M. George, “Functional protein delivery into neurons using polymeric nanoparticles,” Journal of Biological Chemistry, vol. 284, no. 11, pp. 6972–6981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. V. Kabanov, E. V. Batrakova, N. S. Melik-Nubarov et al., “A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain,” Journal of Controlled Release, vol. 22, no. 2, pp. 141–157, 1992. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Y. Kim, W. I. Choi, Y. H. Kim, and G. Tae, “Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier,” Biomaterials, vol. 34, no. 4, pp. 1170–1179, 2013. View at Publisher · View at Google Scholar
  48. T. Dutta, H. B. Agashe, M. Garg, P. Balasubramanium, M. Kabra, and N. K. Jain, “Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro,” Journal of Drug Targeting, vol. 15, no. 1, pp. 89–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. R. S. Dhanikula, T. Hammady, and P. Hildgen, “On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model,” Journal of Pharmaceutical Sciences, vol. 98, no. 10, pp. 3748–3760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Albertazzi, L. Gherardini, M. Brondi, et al., “In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry,” Molecular Pharmacology, vol. 10, no. 1, pp. 249–260, 2013. View at Publisher · View at Google Scholar
  51. S. Kannan, H. Dai, R. S. Navath, et al., “Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model,” Science Translational Medicine, vol. 4, no. 130, Article ID 130ra46, 2012.
  52. J. Wu, C. Wang, J. Sun, and Y. Xue, “Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways,” ACS Nano, vol. 5, no. 6, pp. 4476–4489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Sousa, S. Mandal, C. Garrovo et al., “Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study,” Nanoscale, vol. 2, no. 12, pp. 2826–2834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Ze, L. Zheng, X. Zhao, et al., “Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice,” Chemosphere, 2013. View at Publisher · View at Google Scholar
  55. R. D. Broadwell, “Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal,” Acta Neuropathologica, vol. 79, no. 2, pp. 117–128, 1989. View at Scopus
  56. A. K. Kumagai, J. B. Eisenberg, and W. M. Pardridge, “Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport,” Journal of Biological Chemistry, vol. 262, no. 31, pp. 15214–15219, 1987. View at Scopus
  57. G. R. Dakwar, I. Abu Hammad, M. Popov, et al., “Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles,” Journal of Controlled Release, vol. 160, no. 2, pp. 315–321, 2012. View at Publisher · View at Google Scholar
  58. J. Jin, K. H. Bae, H. Yang, et al., “In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles,” Bioconjugate Chemistry, vol. 22, no. 12, pp. 2568–2572, 2011. View at Publisher · View at Google Scholar
  59. V. Tuan Giam Chuang, U. Kragh-Hansen, and M. Otagiri, “Pharmaceutical strategies utilizing recombinant human serum albumin,” Pharmaceutical Research, vol. 19, no. 5, pp. 569–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. X. H. Tian, F. Wei, T. X. Wang, et al., “In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain,” International Journal of Nanomedicine, vol. 7, pp. 1031–1041, 2012.
  61. K. S. Rao, M. K. Reddy, J. L. Horning, and V. Labhasetwar, “TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs,” Biomaterials, vol. 29, no. 33, pp. 4429–4438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Liu, S. S. Venkatraman, Y. Y. Yang et al., “Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier,” Biopolymers, vol. 90, no. 5, pp. 617–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Xu, H. Wang, L. Liu, et al., “Efficacy of CG(3)R(6)TAT nanoparticles self-assembled from a novel antimicrobial peptide for the treatment of Candida albicans meningitis in rabbits,” Chemotherapy, vol. 57, no. 5, pp. 417–425, 2011. View at Publisher · View at Google Scholar
  64. M. Praetorius, C. Brunner, B. Lehnert et al., “Transsynaptic delivery of nanoparticles to the central auditory nervous system,” Acta Oto-Laryngologica, vol. 127, no. 5, pp. 486–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Xia, X. Gao, G. Gu, et al., “Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery,” International Journal of Pharmacology, vol. 436, no. 1-2, pp. 840–850, 2012.
  66. T. Parikh, M. M. Bommana, and E. Squillante, “Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 74, no. 3, pp. 442–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Liu, C. An, P. Jin, X. Liu, and L. Wang, “Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia,” Biomaterials, vol. 34, no. 3, pp. 817–830, 2013. View at Publisher · View at Google Scholar
  68. F. Hervé, N. Ghinea, and J. M. Scherrmann, “CNS delivery via adsorptive transcytosis,” AAPS Journal, vol. 10, no. 3, pp. 455–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Muro, M. Koval, and V. Muzykantov, “Endothelial endocytic pathways: gates for vascular drug delivery,” Current Vascular Pharmacology, vol. 2, no. 3, pp. 281–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, “Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis,” Biochemical Journal, vol. 377, no. 1, pp. 159–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. J. V. Georgieva, D. Kalicharan, P. O. Couraud et al., “Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro,” Molecular Therapy, vol. 19, no. 2, pp. 318–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. Q. Xu, C. H. Wang, and D. W. Pack, “Polymeric carriers for gene delivery: chitosan and poly(amidoamine) dendrimers,” Current Pharmaceutical Design, vol. 16, no. 21, pp. 2350–2368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Bao, X. Jin, L. Li, F. Lv, and T. Liu, “OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability,” Journal of Materials Science, vol. 23, no. 8, pp. 1891–1901, 2012.
  74. R. Prades, S. Guerrero, E. Arraya, et al., “Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor,” Biomaterials, vol. 33, no. 29, pp. 7194–7205, 2012. View at Publisher · View at Google Scholar
  75. M. Yemişci, Y. Gürsoy-Özdemi, S. Caban, et al., “Transport of a caspase inhibitor across the blood-brain barrier by chitosan nanoparticles,” Methods in Enzymology, vol. 508, pp. 253–269, 2012.
  76. H. Karatas, Y. Aktas, Y. Gursoy-Ozdemir et al., “A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection,” Journal of Neuroscience, vol. 29, no. 44, pp. 13761–13769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. W. M. Pardridge, Y. S. Kang, J. L. Buciak, and J. Yang, “Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate,” Pharmaceutical Research, vol. 12, no. 6, pp. 807–816, 1995. View at Scopus
  78. P. Candela, F. Gosselet, F. Miller et al., “Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro,” Endothelium, vol. 15, no. 5-6, pp. 254–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Li, H. He, X. Jia et al., “A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas,” Biomaterials, vol. 33, no. 15, pp. 3899–3908, 2012. View at Publisher · View at Google Scholar
  80. G. Bu, “Apolipoprotein e and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy,” Nature Reviews Neuroscience, vol. 10, no. 5, pp. 333–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. D. T. Laskowitz, A. D. Thekdi, S. D. Thekdi et al., “Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides,” Experimental Neurology, vol. 167, no. 1, pp. 74–85, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. R. D. Bell, A. P. Sagare, A. E. Friedman et al., “Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 5, pp. 909–918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. T. M. Göppert and R. H. Müller, “Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns,” Journal of Drug Targeting, vol. 13, no. 3, pp. 179–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. R. M. Koffie, C. T. Farrar, L. J. Saidi, C. M. William, B. T. Hyman, and T. L. Spires-Jones, “Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 46, pp. 18837–118842, 2011.
  85. X. H. Tian, X. N. Lin, F. Wei et al., “Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles,” International Journal of Nanomedicine, vol. 6, pp. 445–452, 2011. View at Scopus
  86. H. R. Kim, K. Andrieux, S. Gil et al., “Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins on receptor-medicted endocytosis,” Biomacromolecules, vol. 8, no. 3, pp. 793–799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Michaelis, M. M. Hoffmann, S. Dreis et al., “Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 3, pp. 1246–1253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Zensi, D. Begley, C. Pontikis et al., “Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones,” Journal of Controlled Release, vol. 137, no. 1, pp. 78–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. U. Hülsermann, M. M. Hoffmann, U. Massing, and G. Fricker, “Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries,” Journal of Drug Targeting, vol. 17, no. 8, pp. 610–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Kreuter, D. Shamenkov, V. Petrov et al., “Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier,” Journal of Drug Targeting, vol. 10, no. 4, pp. 317–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. M. P. Mims, A. T. Darnule, R. W. Tovar et al., “A nonexchangeable apolipoprotein E peptide that mediates binding to the low density lipoprotein receptor,” Journal of Biological Chemistry, vol. 269, no. 32, pp. 20539–20547, 1994. View at Scopus
  92. G. Datta, M. Chaddha, D. W. Garber et al., “The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts,” Biochemistry, vol. 39, no. 1, pp. 213–220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. U. Hülsermann, M. M. Hoffmann, U. Massing, and G. Fricker, “Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries,” Journal of Drug Targeting, vol. 17, no. 8, pp. 610–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. C. A. Dyer, D. P. Cistola, G. C. Parry, and L. K. Curtiss, “Structural features of synthetic peptides of apolipoprotein E that bind the LDL receptor,” Journal of Lipid Research, vol. 36, no. 1, pp. 80–88, 1995. View at Scopus
  95. X. S. Wang, G. Ciraolo, R. Morris, and E. Gruenstein, “Identification of a neuronal endocytic pathway activated by an apolipoprotein E (apoE) receptor binding peptide,” Brain Research, vol. 778, no. 1, pp. 6–15, 1997. View at Publisher · View at Google Scholar · View at Scopus
  96. I. Sauer, I. R. Dunay, K. Weisgraber, M. Bienert, and M. Dathe, “An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells,” Biochemistry, vol. 44, no. 6, pp. 2021–2029, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Leupold, H. Nikolenko, and M. Dathe, “Apolipoprotein E peptide-modified colloidal carriers: the design determines the mechanism of uptake in vascular endothelial cells,” Biochimica et Biophysica Acta, vol. 1788, no. 2, pp. 442–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Re, I. Cambianica, C. Zona S, et al., “Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model,” Nanomedicine NBM, vol. 7, no. 5, pp. 551–559, 2011. View at Publisher · View at Google Scholar
  99. G. Datta, D. W. Garber, B. H. Chung et al., “Cationic domain 141-150 of apoE covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo,” Journal of Lipid Research, vol. 42, no. 6, pp. 959–966, 2001. View at Scopus
  100. M. Demeule, J. C. Currie, Y. Bertrand et al., “Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2,” Journal of Neurochemistry, vol. 106, no. 4, pp. 1534–1544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. W. Ke, K. Shao, R. Huang et al., “Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer,” Biomaterials, vol. 30, no. 36, pp. 6976–6985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Xin, X. Sha, X. Jiang, W. Zhang, L. Chen, and X. Fang, “Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles,” Biomaterials, vol. 33, no. 32, pp. 8167–8176, 2012. View at Publisher · View at Google Scholar
  103. J. Ren, S. Shen, D. Wang, et al., “The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2,” Biomaterials, vol. 33, no. 11, pp. 3324–3333, 2012. View at Publisher · View at Google Scholar
  104. P. Ponka and C. N. Lok, “The transferrin receptor: role in health and disease,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 10, pp. 1111–1137, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Moos, T. R. Nielsen, T. Skjørringe, and E. H. Morgan, “Iron trafficking inside the brain,” Journal of Neurochemistry, vol. 103, no. 5, pp. 1730–1740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. C. C. Visser, S. Stevanović, L. H. Voorwinden et al., “Targeting liposomes with protein drugs to the blood-brain barrier in vitro,” European Journal of Pharmaceutical Sciences, vol. 25, no. 2-3, pp. 299–305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Chang, Y. Jallouli, M. Kroubi et al., “Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier,” International Journal of Pharmaceutics, vol. 379, no. 2, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. A. G. de Boer and P. J. Gaillard, “Drug targeting to the brain,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 323–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. V. Mishra, S. Mahor, A. Rawat et al., “Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles,” Journal of Drug Targeting, vol. 14, no. 1, pp. 45–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Ulbrich, T. Hekmatara, E. Herbert, and J. Kreuter, “Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB),” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 2, pp. 251–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. H. Brock, “Lactoferrin—50 years on,” International Journal of Biochemistry & Cell Biology, vol. 90, no. 3, pp. 245–251, 2012.
  112. J. Lalani, Y. Raichandani, R. Mathur, et al., “Comparative receptor based brain delivery of tramadol-loaded poly(lactic-co-glycolic acid) nanoparticles,” Journal of Biomedical Nanotechnology, vol. 8, no. 6, pp. 918–927, 2012.
  113. A. R. Jones and E. V. Shusta, “Blood-brain barrier transport of therapeutics via receptor-mediation,” Pharmaceutical Research, vol. 24, no. 9, pp. 1759–1771, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Huwyler, D. Wu, and W. M. Pardridge, “Brain drug delivery of small molecules using immunoliposomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 14164–14169, 1996. View at Publisher · View at Google Scholar · View at Scopus
  115. E. Markoutsa, G. Pampalakis, A. Niarakis et al., “Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 2, pp. 265–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. H. J. Lee, B. Engelhardt, J. Lesley, U. Bickel, and W. M. Pardridge, “Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse,” Journal of Pharmacology and Experimental Therapeutics, vol. 292, no. 3, pp. 1048–1052, 2000. View at Scopus
  117. E. Salvati, F. Re, S. Sesana, et al., “Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model,” International Journal of Nanomedicine, vol. 8, pp. 1749–1758, 2013.
  118. B. Cui, C. Wu, L. Chen, et al., “One at a time, live tracking of NGF axonal transport using quantum dots,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13666–13671, 2007. View at Publisher · View at Google Scholar
  119. J. M. Bergen and S. H. Pun, “Analysis of the intracellular barriers encountered by nonviral gene carriers in a model of spatially controlled delivery to neurons,” Journal of Gene Medicine, vol. 10, no. 2, pp. 187–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. H. E. de Vries, J. Kuiper, A. G. de Boer, T. J. C. van Berkel, and D. D. Breimer, “The blood-brain barrier in neuroinflammatory diseases,” Pharmacological Reviews, vol. 49, no. 2, pp. 143–155, 1997. View at Scopus
  121. S. Sadekar and H. Ghandehari, “Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery,” Advanced Drug Delivery Reviews, vol. 64, no. 6, pp. 571–588, 2012. View at Publisher · View at Google Scholar
  122. A. F. Kotzé, H. L. Lueßen, B. J. Leeuw, B. G. Boer, J. C. Verhoef, and H. E. Junginger, “Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2),” Journal of Controlled Release, vol. 51, no. 1, pp. 35–46, 1998. View at Publisher · View at Google Scholar · View at Scopus
  123. L. H. Treat, N. McDannold, Y. Zhang, N. Vykhodtseva, and K. Hynynen, “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma,” Ultrasound in Medicine & Biology, vol. 38, no. 10, pp. 1716–1725, 2012.
  124. R. H. Adamson, J. F. Lenz, X. Zhang, G. N. Adamson, S. Weinbaum, and F. E. Curry, “Oncotic pressures opposing filtration across non-fenestrated rat microvessels,” Journal of Physiology, vol. 557, no. 3, pp. 889–907, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Jander, M. Schroeter, and A. Saleh, “Imaging inflammation in acute brain ischemia,” Stroke, vol. 38, no. 2, pp. S642–S645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Enzmann, C. Mysiorek, R. Gorina, et al., “The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury,” Acta Neuropathologica, vol. 125, no. 3, pp. 395–412, 2013. View at Publisher · View at Google Scholar
  127. G. Stoll, S. Jander, and M. Schroeter, “Inflammation and glial responses in ischemic brain lesions,” Progress in Neurobiology, vol. 56, no. 2, pp. 149–171, 1998. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Gartner, “HIV infection and dementia,” Science, vol. 287, no. 5453, pp. 602–604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Afergan, H. Epstein, R. Dahan et al., “Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes,” Journal of Controlled Release, vol. 132, no. 2, pp. 84–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. K. Park, “Trojan monocytes for improved drug delivery to the brain,” Journal of Controlled Release, vol. 132, no. 2, p. 75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. V. Dousset, B. Brochet, M. S. A. Deloire et al., “MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium,” American Journal of Neuroradiology, vol. 27, no. 5, pp. 1000–1005, 2006. View at Scopus
  132. S. P. Manninger, L. L. Muldoon, G. Nesbit, T. Murillo, P. M. Jacobs, and E. A. Neuwelt, “An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions,” American Journal of Neuroradiology, vol. 26, no. 9, pp. 2290–2300, 2005. View at Scopus
  133. V. Dousset, L. Ballarino, C. Delalande et al., “Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2- weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis,” American Journal of Neuroradiology, vol. 20, no. 2, pp. 223–227, 1999. View at Scopus
  134. V. Dousset, C. Delalande, L. Ballarino, et al., “In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance,” Magnetic Resonance in Medicine, vol. 41, no. 2, pp. 329–333, 1999.
  135. S. Floris, E. L. A. Blezer, G. Schreibelt et al., “Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study,” Brain, vol. 127, no. 3, pp. 616–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Rausch, P. Hiestand, D. Baumann, C. Cannet, and M. Rudin, “MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE,” Magnetic Resonance in Medicine, vol. 50, no. 2, pp. 309–314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Rausch, P. Hiestand, C. A. Foster, D. R. Baumann, C. Cannet, and M. Rudin, “Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: clinical implications for ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging,” Journal of Magnetic Resonance Imaging, vol. 20, no. 1, pp. 16–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. N. Nighoghossian, M. Wiart, S. Cakmak et al., “Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients,” Stroke, vol. 38, no. 2, pp. 303–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Saleh, M. Schroeter, C. Jonkmanns, H. P. Hartung, U. Mödder, and S. Jander, “In vivo MRI of brain inflammation in human ischaemic stroke,” Brain, vol. 127, no. 7, pp. 1670–1677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. C. Kleinschnitz, A. Schütz, I. Nölte et al., “In vivo detection of developing vessel occlusion in photothrombotic ischemic brain lesions in the rat by iron particle enhanced MRI,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 11, pp. 1548–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Rausch, A. Sauter, J. Frohlich, U. Neubacher, E. W. Radu, and M. Rudin, “Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage,” Magnetic Resonance in Medicine, vol. 46, no. 5, pp. 1018–1022, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Rausch, D. Baumann, U. Neubacher, and M. Rudin, “In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO,” NMR in Biomedicine, vol. 15, no. 4, pp. 278–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Schroeter, A. Saleh, D. Wiedermann, M. Hoehn, and S. Jander, “Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia,” Magnetic Resonance in Medicine, vol. 52, no. 2, pp. 403–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. E. A. Neuwelt, P. Várallyay, A. G. Bagó, L. L. Muldoon, G. Nesbit, and R. Nixon, “Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours,” Neuropathology and Applied Neurobiology, vol. 30, no. 5, pp. 456–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. C. Zimmer, R. Weissleder, K. Poss, A. Bogdanova, S. C. Wright Jr., and W. S. Enochs, “MR imaging of phagocytosis in experimental gliomas,” Radiology, vol. 197, no. 2, pp. 533–538, 1995. View at Scopus
  146. K. Baeten, J. J. Hendriks, N. Hellings et al., “Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging,” Journal of Neuroimmunology, vol. 195, no. 1-2, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. B. Brochet, M. S. Deloire, T. Touil et al., “Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE,” NeuroImage, vol. 32, no. 1, pp. 266–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. R. D. Oude Engberink, E. L. Blezer, C. D. Dijkstra, S. M. van der Pol, A. van der Toorn, and H. E. de Vries, “Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis,” NMR in Biomedicine, vol. 23, no. 9, pp. 1087–1096, 2010.
  149. V. Sekeljic, D. Bataveljic, S. Stamenkovic et al., “Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model,” Brain Structure and Function, vol. 217, no. 2, pp. 411–420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Parodi, N. Quattrocchi, A. L. van de Ven, et al., “Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions,” Nature Nanotechnology, vol. 8, no. 1, pp. 61–68, 2013.
  151. E. Syková and C. Nicholson, “Diffusion in brain extracellular space,” Physiological Reviews, vol. 88, no. 4, pp. 1277–1340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. D. J. Wolak and R. G. Thorne, “Diffusion of macromolecules in the Brain: implications for drug delivery,” Molecular Pharmacology, 2013. View at Publisher · View at Google Scholar
  153. V. A. Levin, J. D. Fenstermacher, and C. S. Patlak, “Sucrose and inulin space measurements of cerebral cortex in four mammalian species,” The American Journal of Physiology, vol. 219, no. 5, pp. 1528–1533, 1970. View at Scopus
  154. R. G. Thorne and C. Nicholson, “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 14, pp. 5567–5572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. E. A. Nance, G. F. Woodworth, K. A. Sailor, et al., “A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue,” Science Translational Medicine, vol. 4, no. 149, Article ID 149ra119, 2012.
  156. A. Pietroiusti, L. Campagnolo, and B. Fadeel, “Interactions of engineered nanoparticles with organs protected by internal biological barriers,” Small, 2012. View at Publisher · View at Google Scholar
  157. E. Mahon, A. Salvati, F. Baldelli Bombelli, I. Lynch, and K. A. Dawson, “Designing the nanoparticle-biomolecule interface for targeting and therapeutic delivery,” Journal of Controlled Release, vol. 161, no. 2, pp. 164–174, 2012.
  158. Y. Yang and G. A. Rosenberg, “Blood-brain barrier breakdown in acute and chronic cerebrovascular disease,” Stroke, vol. 42, no. 11, pp. 3323–3328, 2011. View at Publisher · View at Google Scholar
  159. H. Chen, F. Spagnoli, M. Burris, et al., “Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia-ischemia,” Stroke, vol. 43, no. 3, pp. 884–887, 2012. View at Publisher · View at Google Scholar
  160. X. Deng, X. Wang, and R. Andersson, “Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat,” Journal of Applied Physiology, vol. 78, no. 6, pp. 2052–2061, 1995. View at Scopus
  161. J. Lou, M. Chofflon, C. Juillard et al., “Brain microvascular endothelial cells and leukocytes derived from patients with multiple sclerosis exhibit increased adhesion capacity,” NeuroReport, vol. 8, no. 3, pp. 629–633, 1997. View at Scopus
  162. A. Minagar, P. Shapshak, R. Fujimura, R. Ownby, M. Heyes, and C. Eisdorfer, “The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis,” Journal of the Neurological Sciences, vol. 202, no. 1-2, pp. 13–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  163. S. J. Bolton and V. H. Perry, “Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats,” Experimental Neurology, vol. 154, no. 1, pp. 231–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  164. H. S. Sharma, R. J. Castellani, M. A. Smith, and A. Sharma, “The blood-brain barrier in Alzheimer's disease: novel therapeutic targets and nanodrug delivery,” International Review of Neurobiology, vol. 102, pp. 47–90, 2012. View at Publisher · View at Google Scholar
  165. K. D. Kania, H. C. Wijesuriya, S. B. Hladky, and M. A. Barrand, “Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells,” Brain Research, vol. 1418, pp. 1–11, 2011. View at Publisher · View at Google Scholar
  166. H. Sarin, A. S. Kanevsky, H. Wu et al., “Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells,” Journal of Translational Medicine, vol. 6, article 80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids and Surfaces B, vol. 66, no. 2, pp. 274–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. G. Oberdörster, Z. Sharp, V. Atudorei et al., “Translocation of inhaled ultrafine particles to the brain,” Inhalation Toxicology, vol. 16, no. 6-7, pp. 437–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  169. J. F. Hillyer and R. M. Albrecht, “Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles,” Journal of Pharmaceutical Sciences, vol. 90, no. 12, pp. 1927–1936, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. C. Schleh, M. Semmler-Behnke, J. Lipka, et al., “Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration,” Nanotoxicology, vol. 6, no. 1, pp. 36–46, 2012.
  171. E. Barbu, E. Molnàr, J. Tsibouklis, and D. C. Górecki, “The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier,” Expert Opinion on Drug Delivery, vol. 6, no. 6, pp. 553–565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  172. R. Landsiedel, E. Fabian, L. Ma-Hock, B. van Ravenzwaay, W. Wohlleben, et al., “Toxico-/biokinetics of nanomaterials,” Archives of Toxicoogyl, vol. 86, no. 7, pp. 1021–1060, 2012. View at Publisher · View at Google Scholar
  173. T. T. Win-Shwe and H. Fujimaki, “Nanoparticles and neurotoxicity,” International Journal of Molecular Sciences, vol. 12, no. 9, pp. 6267–6280, 2011. View at Publisher · View at Google Scholar
  174. A. Elder, R. Gelein, V. Silva et al., “Translocation of inhaled ultrafine manganese oxide particles to the central nervous system,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1172–1178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. E. Hutter, S. Boridy, S. Labrecque et al., “Microglial response to gold nanoparticles,” ACS Nano, vol. 4, no. 5, pp. 2595–2606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. C. J. Rivet, Y. Yuan, D. A. Borca-Tasciuc, and R. J. Gilbert, “Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity,” Chemical Research in Toxicology, vol. 25, no. 1, pp. 153–161, 2011.
  177. J. C. Olivier, L. Fenart, R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet, “Indirect evidence that drug brain targeting using polysorbate 80- coated polybutylcyanoacrylate nanoparticles is related to toxicity,” Pharmaceutical Research, vol. 16, no. 12, pp. 1836–1842, 1999. View at Scopus
  178. J. Buse and A. El-Aneed, “Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances,” Nanomedicine, vol. 5, no. 8, pp. 1237–1260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. P. Xu, J. Li, B. Chen, et al., “The real-time neurotoxicity analysis of Fe3O4 nanoparticles combined with daunorubicin for rat brain in vivo,” Journal of Biomedical Nanotechnology, vol. 8, no. 3, pp. 417–423, 2012.
  180. S. P. Singh, M. F. Rahman, U. S. Murty, M. Mahboob, and P. Grover, “Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment,” Toxicology and Applied Pharmacology, vol. 266, no. 1, pp. 56–66, 2013. View at Publisher · View at Google Scholar
  181. Z. Cui and R. J. Mumper, “Coating of cationized protein on engineered nanoparticles results in enhanced immune responses,” International Journal of Pharmaceutics, vol. 238, no. 1-2, pp. 229–239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. M. I. Papisov, V. Belov, and K. Gannon, “Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS,” Molecular Pharmacology, 2013. View at Publisher · View at Google Scholar