About this Journal Submit a Manuscript Table of Contents
ISRN Biomarkers
Volume 2013 (2013), Article ID 354123, 8 pages
Research Article

Flow Cytometric Measurement of Aneuploid DNA Content Correlates with High S-Phase Fraction and Poor Prognosis in Patients with Non-Small-Cell Lung Cancer

1Laboratory of Specific Recognition and Biological Activity, Department of Quality Control, Center of Molecular Immunology, 216 Street and 15 Avenue, Atabey, Playa, P.O. Box 16040, 11600 Havana, Cuba
2Department of Pathology, Manuel Fajardo General Hospital, Zapata and D Street Vedado, Plaza de la Revolución, 10400 Havana, Cuba

Received 21 June 2013; Accepted 18 July 2013

Academic Editors: L. Daniele, M. Jensen, and Z. Wang

Copyright © 2013 Rancés Blanco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kaira, N. Oriuchi, N. Sunaga, T. Ishizuka, K. Shimizu, and N. Yamamoto, “A systemic review of PET and biology in lung cancer,” American Journal of Translational Research, vol. 3, no. 4, pp. 383–391, 2011. View at Scopus
  2. G. Giaccone and P. A. Zucali, “Src as a potential therapeutic target in non-small-cell lung cancer,” Annals of Oncology, vol. 19, no. 7, pp. 1219–1223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Berghmans, M. Paesmans, and J.-P. Sculier, “Prognostic factors in stage III non-small lung cancer: a review of conventional, metabolic and new biological variables,” Therapeutic Advances in Medical Oncology, vol. 3, no. 3, pp. 127–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Blanchard, “Targeted agents in non small cell lung cancer,” Cancer Therapy, vol. 6, pp. 95–102, 2008.
  5. K. Ueda, Y. Kaneda, M. Hayashi, M. Jinbo, T.-S. Li, and K. Hamano, “Relationship among genetic alterations, DNA content, and clinicopathological features in primary lung adenocarcinomas,” Cancer Genomics and Proteomics, vol. 3, no. 3-4, pp. 265–270, 2006. View at Scopus
  6. C. R. Thoma, A. Toso, P. Meraldi, and W. Krek, “Mechanisms of aneuploidy and its suppression by tumour suppressor proteins,” Swiss Medical Weekly, vol. 8, no. 141, article w13170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nature Reviews Genetics, vol. 13, no. 3, pp. 189–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. G. P. M. Ten Velde, B. Schutte, A. Vermeulen, A. Volovics, M. M. J. Reynders, and G. H. Blijham, “Flow cytometric analysis of DNA ploidy level in paraffin-embedded tissue of non-small-cell lung cancer,” European Journal of Cancer and Clinical Oncology, vol. 24, no. 3, pp. 455–460, 1988. View at Scopus
  9. W. E. Corver and C. J. Cornelisse, “Flow cytometry of human solid tumours: clinical and research applications,” Current Diagnostic Pathology, vol. 8, no. 4, pp. 249–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. D. E. Merkel and W. L. McGuire, “Ploidy, proliferative activity and prognosis. DNA flow cytometry of solid tumors,” Cancer, vol. 65, no. 5, pp. 1194–1205, 1990. View at Scopus
  11. J. S. Ross, “DNA ploidy and cell cycle analysis in cancer diagnosis and prognosis,” Oncology, vol. 10, no. 6, pp. 867–887, 1996. View at Scopus
  12. J. Gawrychowski, B. Lackowska, and A. Gabriel, “Prognosis of the surgical treatment of patients with non-small cell lung cancer (NSCLC)—relation to DNA ploidy,” European Journal of Cardio-thoracic Surgery, vol. 23, no. 6, pp. 870–877, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Oliani, D. Barana, A. Cazzadori et al., “Cytofluorimetric evaluation of DNA ploidy in lung cancer: a bronchoscopic study,” International Journal of Biological Markers, vol. 20, no. 2, pp. 87–92, 2005. View at Scopus
  14. V. Ludovini, L. Pistola, V. Gregorc et al., “Biological markers and DNA flow cytometric analysis in radically resected patients with non-small cell lung cancer. A study of the perugia multidisciplinary team for thoracic tumors,” Tumori, vol. 94, no. 3, pp. 398–405, 2008. View at Scopus
  15. R. Blanco, C. E. Rengifo, M. Cedeño, M. Frómeta, E. Rengifo, and M. Ramos-Suzarte, “Tumor expression of the carcinoembryonic antigen correlates with high mitotic activity and cell pleomorphism index in lung carcinoma,” Journal of Histology, vol. 2013, Article ID 827089, 8 pages, 2013. View at Publisher · View at Google Scholar
  16. D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” Journal of Histochemistry and Cytochemistry, vol. 31, no. 11, pp. 1333–1335, 1983. View at Scopus
  17. J. Vansteenkiste, C. Dooms, and P. de Leyn, “Early stage non-small-cell lung cancer: challenges in staging and adjuvant treatment: evidence-based staging,” Annals of Oncology, vol. 21, supplement 7, pp. vii189–vii195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R.-P. Perng, C.-Y. Chen, G.-C. Chang et al., “Revisit of 1997 TNM staging system—survival analysis of 1112 lung cancer patients in Taiwan,” Japanese Journal of Clinical Oncology, vol. 37, no. 1, pp. 9–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Jin, Z. Wang, L. Qiu et al., “Potential biomarkers involving IKK/RelA signal in early stage non-small cell lung cancer,” Cancer Science, vol. 29, no. 3, pp. 582–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Qiu, H. Yang, H. Chen et al., “Detection of CEA mRNA, p53 and AE1/AE3 in haematoxylin-eosin-negative lymph nodes of early-stage non-small cell lung cancer may improve veracity of N staging and indicate prognosis,” Japanese Journal of Clinical Oncology, vol. 40, no. 2, Article ID hyp144, pp. 146–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Petersen, “Chromosomes, ploidy and differentiation of lung cancer,” Proceedings of the American Association For Cancer Research, vol. 45, 2004.
  22. D. Choma, J.-P. Daurès, X. Quantin, and J. L. Pujol, “Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data,” British Journal of Cancer, vol. 85, no. 1, pp. 14–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kasprzyk, W. Dyszkiewicz, M. Roszak et al., “DNA ploidy as an independent prognostic factor: 10-year results in a group of patients surgically treated for squamous cell lung cancer,” KardIochIrurgIa i TorakochIrurgIa Polska, vol. 3, pp. 327–333, 2012. View at Publisher · View at Google Scholar
  24. H. Hofmann, J. Knolle, H. Bahn, T. Klapperstück, C. Lautenschläger, and H. Neef, “Flow cytometric analysis of DNA content and proliferation and immunohistochemical staining of Ki-67 in non-small cell lung cancer,” The Journal of Cardiovascular Surgery, vol. 42, no. 4, pp. 555–560, 2001.
  25. W. Dyszkiewicz, M. Kasprzyk, C. Piwkowski, L. Gasiorowski, and R. Ramlau, “The prognostic value of DNA content analysis in patients with squamous cell lung cancer treated surgically,” Lung Cancer, vol. 29, no. 3, pp. 161–167, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Otsuka, S. Funai, T. Azumi, S. Hara, K. Okuno, and M. Yasutomi, “Ability of bivariate cytokeratin and deoxyribonucleic acid flow cytometry to determine the biologic aggressiveness of resectable non-small cell lung cancer,” Journal of Thoracic and Cardiovascular Surgery, vol. 124, no. 2, pp. 293–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. T. Ikonen, A. Ojala, J.-P. Salenius, J. Mattila, H. Riekkinen, and T. Wigren, “DNA flow cytometry in surgically treated lung cancer. Prognostic significance,” Scandinavian Cardiovascular Journal, vol. 33, no. 4, pp. 228–233, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Visakorpi, K. Holli, and M. Hakama, “High cell proliferation activity determined by DNA flow cytometry and prognosis in epidermoid lung carcinoma,” Acta Oncologica, vol. 34, no. 5, pp. 605–609, 1995. View at Scopus
  29. M. M. F. J. Tinnemans, B. Schutte, M.-H. J. H. Lenders, G. P. M. Ten Velde, F. C. S. Ramaekers, and G. H. Blijham, “Cytokinetic analysis of lung cancer by in vivo bromodeoxyuridine labelling,” British Journal of Cancer, vol. 67, no. 6, pp. 1217–1222, 1993. View at Scopus
  30. M. Volm, J. Mattern, and J. Sonka, “DNA distribution in non-small-cell lung carcinomas and its relationship to clinical behavior,” Cytometry, vol. 6, no. 4, pp. 348–356, 1985. View at Scopus
  31. J. Simony, J.-L. Pujol, M. Radal, E. Ursule, F.-B. Michel, and H. Pujol, “In situ evaluation of growth fraction determined by monoclonal antibody Ki-67 and ploidy in surgically resected non-small cell lung cancers,” Cancer Research, vol. 50, no. 14, pp. 4382–4387, 1990. View at Scopus
  32. J. A. Alvarez-Riesgo, A. Sampedro, R. Hernandez, M. V. Folgueras, A. Salas- Bustamante, and A. Cueto, “Cell proliferation activity and prognostic index in squamous cell lung carcinoma,” Analytical Cellular Pathology, vol. 16, no. 4, pp. 233–242, 1998. View at Scopus
  33. A. Costa, R. Silvestrini, C. Mochen et al., “P53 expression, DNA ploidy and S-phase cell fraction in operable locally advanced non-small-cell lung cancer,” British Journal of Cancer, vol. 73, no. 7, pp. 914–919, 1996. View at Scopus
  34. J. C. Pence, B.-J. M. Kerns, R. K. Dodge, and J. D. Iglehart, “Prognostic significance of the proliferation index in surgically resected non-small-cell lung cancer,” Archives of Surgery, vol. 128, no. 12, pp. 1382–1390, 1993. View at Scopus