About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2013 (2013), Article ID 365916, 10 pages
http://dx.doi.org/10.1155/2013/365916
Research Article

Synergy in B-Cell Activation between Toll-Like Receptor 9 and Transmembrane Activator and Calcium-Modulating Cyclophilin Ligand Interactor (TACI) in A181E/C104R Compound Heterozygous Siblings

1Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, P.O. Box 85090, KC.01.069.0, 3584 EA Utrecht, The Netherlands
2Department of Medical Immunology, University Medical Center Utrecht, Heidelberglaan 100, F03.821, P.O. Box 85500, 3508 GA Utrecht, The Netherlands

Received 21 April 2013; Accepted 26 May 2013

Academic Editors: S.-i. Fujii, F. Granucci, W. W. Leitner, and S. Sánchez-Ramón

Copyright © 2013 Annick A. J. M. van de Ven et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Park, J. T. Li, J. B. Hagan, D. E. Maddox, and R. S. Abraham, “Common variable immunodeficiency: a new look at an old disease,” The Lancet, vol. 372, no. 9637, pp. 489–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Cunningham-Rundles, L. Radigan, A. K. Knight, L. Zhang, L. Bauer, and A. Nakazawa, “TLR9 activation is defective in common variable immune deficiency,” Journal of Immunology, vol. 176, no. 3, pp. 1978–1987, 2006. View at Scopus
  3. J. E. Yu, A. K. Knight, L. Radigan et al., “Toll-like receptor 7 and 9 defects in common variable immunodeficiency,” Journal of Allergy and Clinical Immunology, vol. 124, no. 2, pp. 349–356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G.-U. Von Bülow and R. J. Bram, “NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily,” Science, vol. 278, no. 5335, pp. 138–141, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Schneider, F. Mackay, V. Steiner et al., “BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1747–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Wu, D. Bressette, J. A. Carrell et al., “Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS,” Journal of Biological Chemistry, vol. 275, no. 45, pp. 35478–35485, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. A. Marsters, M. Yan, R. M. Pitti, P. E. Haas, V. M. Dixit, and A. Ashkenazi, “Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI,” Current Biology, vol. 10, no. 13, pp. 785–788, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Bischof, S. F. Elsawa, G. Mantchev et al., “Selective activation of TACI by syndecan-2,” Blood, vol. 107, no. 8, pp. 3235–3242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Mackay, P. Schneider, P. Rennert, and J. Browning, “BAFF and APRIL: a tutorial on B cell survival,” Annual Review of Immunology, vol. 21, pp. 231–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Laabi, M. P. Gras, F. Carbonnel et al., “A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma,” EMBO Journal, vol. 11, no. 11, pp. 3897–3904, 1992. View at Scopus
  11. J. S. Thompson, S. A. Bixler, F. Qian et al., “BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF,” Science, vol. 293, no. 5537, pp. 2108–2111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Hauer, S. Püschner, P. Ramakrishnan et al., “TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-κB pathway by TRAF-binding TNFRs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2874–2879, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Castigli, S. A. Wilson, A. Elkhal, E. Ozcan, L. Garibyan, and R. S. Geha, “Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation,” Journal of Allergy and Clinical Immunology, vol. 120, no. 4, pp. 885–891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Ozcan, L. Garibyan, J. J.-Y. Lee, R. J. Bram, K.-P. Lam, and R. S. Geha, “Transmembrane activator, calcium modulator, and cyclophilin ligand interactor drives plasma cell differentiation in LPS-activated B cells,” Journal of Allergy and Clinical Immunology, vol. 123, no. 6, pp. 1277–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Ozcan, I. Rauter, L. Garibyan, S. R. Dillon, and R. S. Geha, “Toll-like receptor 9, transmembrane activator and calcium-modulating cyclophilin ligand interactor, and CD40 synergize in causing B-cell activation,” Journal of Allergy and Clinical Immunology, vol. 128, no. 3, pp. 601–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. He, R. Santamaria, W. Xu et al., “The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88,” Nature Immunology, vol. 11, no. 9, pp. 836–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Salzer, C. Bacchelli, S. Buckridge et al., “Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes,” Blood, vol. 113, no. 9, pp. 1967–1976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Zhang, L. Radigan, U. Salzer et al., “Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes,” Journal of Allergy and Clinical Immunology, vol. 120, no. 5, pp. 1178–1185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Q. Pan-Hammarström, U. Salzer, L. Du et al., “Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency,” Nature Genetics, vol. 39, no. 4, pp. 429–430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. R. M. Locksley, N. Killeen, and M. J. Lenardo, “The TNF and TNF receptor superfamilies: integrating mammalian biology,” Cell, vol. 104, no. 4, pp. 487–501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Garibyan, A. A. Lobito, R. M. Siegel, M. E. Call, K. W. Wucherpfennig, and R. S. Geha, “Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID),” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1550–1557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. G. Hymowitz, D. R. Patel, H. J. A. Wallweber et al., “Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 7218–7227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Castigli, S. A. Wilson, L. Garibyan et al., “TACI is mutant in common variable immunodeficiency and IgA deficiency,” Nature Genetics, vol. 37, no. 8, pp. 829–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Salzer, H. M. Chapel, A. D. B. Webster et al., “Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans,” Nature Genetics, vol. 37, no. 8, pp. 820–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Bacchelli, K. F. Buckland, S. Buckridge et al., “The C76R transmembrane activator and calcium modulator cyclophilin ligand interactor mutation disrupts antibody production and B-cell homeostasis in heterozygous and homozygous mice,” Journal of Allergy and Clinical Immunology, vol. 127, no. 5, pp. 1253–1259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Fried, I. Rauter, S. R. Dillon, H. H. Jabara, and R. S. Geha, “Functional analysis of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) mutations associated with common variable immunodeficiency,” Journal of Allergy and Clinical Immunology, vol. 128, no. 1, pp. 226–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Lee, H. H. Jabara, L. Garibyan et al., “The C104R mutant impairs the function of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) through haploinsufficiency,” Journal of Allergy and Clinical Immunology, vol. 126, no. 6, pp. 1234–e2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Lee, I. Rauter, L. Garibyan et al., “The murine equivalent of the A181E TACI mutation associated with common variable immunodeficiency severely impairs B-cell function,” Blood, vol. 114, no. 11, pp. 2254–2262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. J. M. van de Ven, L. van de Corput, C. M. van Tilburg et al., “Lymphocyte characteristics in children with common variable immunodeficiency,” Clinical Immunology, vol. 135, no. 1, pp. 63–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Latz, A. Schoenemeyer, A. Visintin et al., “TLR9 signals after translocating from the ER to CpG DNA in the lysosome,” Nature Immunology, vol. 5, no. 2, pp. 190–198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Foerster, N. Voelxen, M. Rakhmanov et al., “B cell receptor-mediated calcium signaling is impaired in B lymphocytes of type Ia patients with common variable immunodeficiency,” Journal of Immunology, vol. 184, no. 12, pp. 7305–7313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Van Zelm, J. Smet, B. Adams et al., “CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1265–1274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Malphettes, L. Gérard, M. Carmagnat et al., “Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect,” Clinical Infectious Diseases, vol. 49, no. 9, pp. 1329–1338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Dedeoglu, B. Horwitz, J. Chaudhuri, F. W. Alt, and R. S. Geha, “Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB,” International Immunology, vol. 16, no. 3, pp. 395–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo, “Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme,” Cell, vol. 102, no. 5, pp. 553–563, 2000. View at Scopus
  36. P. Revy, T. Muto, Y. Levy et al., “Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2),” Cell, vol. 102, no. 5, pp. 565–575, 2000. View at Scopus
  37. A. M. Krieg, “CpG motifs in bacterial DNA and their immune effects,” Annual Review of Immunology, vol. 20, pp. 709–760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Kawai and S. Akira, “Innate immune recognition of viral infection,” Nature Immunology, vol. 7, no. 2, pp. 131–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Latz, A. Verma, A. Visintin et al., “Ligand-induced conformational changes allosterically activate Toll-like receptor 9,” Nature Immunology, vol. 8, no. 7, pp. 772–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Sato, H. Sanjo, K. Takeda et al., “Essential function for the kinase TAK1 in innate and adaptive immune responses,” Nature Immunology, vol. 6, no. 11, pp. 1087–1095, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Mackay and H. Leung, “The role of the BAFF/APRIL system on T cell function,” Seminars in Immunology, vol. 18, no. 5, pp. 284–289, 2006. View at Publisher · View at Google Scholar · View at Scopus