About this Journal Submit a Manuscript Table of Contents
ISRN Neurology
Volume 2013 (2013), Article ID 375852, 5 pages
http://dx.doi.org/10.1155/2013/375852
Review Article

Noncoding RNAs in Neurodegenerative Diseases

1Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
2Department of Physical Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
3Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA

Received 27 February 2013; Accepted 10 April 2013

Academic Editors: A. Conti and T. Müller

Copyright © 2013 Shraddha D. Rege et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. A. Qureshi, J. S. Mattick, and M. F. Mehler, “Long non-coding RNAs in nervous system function and disease,” Brain Research, vol. 1338, pp. 20–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. S. Mattick, “The central role of RNA in human development and cognition,” FEBS Letters, vol. 585, no. 11, pp. 1600–1616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Salta and B. D. Strooper, “Non-coding RNAs with essential roles in neurodegenerative disorders,” The Lancet Neurology, vol. 11, no. 2, pp. 189–200, 2012.
  4. J. Kim, K. Inoue, J. Ishii et al., “A microRNA feedback circuit in midbrain dopamine neurons,” Science, vol. 317, no. 5842, pp. 1220–1224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Harraz, T. M. Dawson, and V. L. Dawson, “MicroRNAs in Parkinson's disease,” Journal of Chemical Neuroanatomy, vol. 42, no. 2, pp. 127–130, 2011. View at Publisher · View at Google Scholar
  6. N. K. Liu and X. M. Xu, “MicroRNA in central nervous system trauma and degenerative disorders,” Physiological Genomics, vol. 43, no. 10, pp. 571–580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar
  8. P. T. Nelson, W. X. Wang, and B. W. Rajeev, “MicroRNAs (miRNAs) in neurodegenerative diseases,” Brain Pathology, vol. 18, no. 1, pp. 130–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Bian and T. Sun, “Functions of noncoding RNAs in neural development and neurological diseases,” Molecular Neurobiology, vol. 44, no. 3, pp. 359–373, 2011. View at Publisher · View at Google Scholar
  10. P. Provost, “MicroRNAs as a molecular basis for mental retardation, Alzheimer's and prion diseases,” Brain Research, vol. 1338, pp. 58–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Du and A. Pertsemlidis, “Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation,” Journal of Molecular Cell Biology, vol. 3, no. 3, pp. 176–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Vilardo, C. Barbato, M. Ciotti, C. Cogoni, and F. Ruberti, “MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons,” The Journal of Biological Chemistry, vol. 285, no. 24, pp. 18344–18351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Wang, J. M. van der Walt, G. Mayhew et al., “Variation in the miRNA-433 binding site of FGF20 confers risk for parkinson disease by overexpression of α-synuclein,” American Journal of Human Genetics, vol. 82, no. 2, pp. 283–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. Hebert, K. Horre, L. Nicolai et al., “Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression,” Proceedings of the National Academy of the Sciences of the United States of America, vol. 105, no. 17, pp. 6415–6420, 2008. View at Publisher · View at Google Scholar
  15. W. X. Wang, Q. Huang, Y. Hu, A. J. Stromberg, and P. T. Nelson, “Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter,” Acta Neuropathologica, vol. 121, no. 2, pp. 193–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Boissonneault, I. Plante, S. Rivest, and P. Provost, “MicroRNA-298 and microRNA-328 regulate expression of mouse β-amyloid precursor protein-converting enzyme 1,” The Journal of Biological Chemistry, vol. 284, no. 4, pp. 1971–1981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Massone, I. Vassallo, G. Fiorino et al., “17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease,” Neurobiology of Disease, vol. 41, no. 2, pp. 308–317, 2011. View at Publisher · View at Google Scholar
  18. S. Massone, E. Ciarlo, S. Vella et al., “NDM29, a RNA polymerase III-dependent non-coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion,” Biochimica et Biophysica Acta, vol. 1823, no. 7, pp. 1170–1177, 2012. View at Publisher · View at Google Scholar
  19. W. J. Lukiw, Y. Zhao, and G. C. Jian, “An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in alzheimer disease and in stressed human brain cells,” The Journal of Biological Chemistry, vol. 283, no. 46, pp. 31315–31322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Junn, K. W. Lee, S. J. Byeong, T. W. Chan, J. Y. Im, and M. M. Mouradian, “Repression of α-synuclein expression and toxicity by microRNA-7,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13052–13057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Doxakis, “Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153,” The Journal of Biological Chemistry, vol. 285, no. 17, pp. 12726–12734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Gehrke, Y. Imai, N. Sokol, and B. Lu, “Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression,” Nature, vol. 466, no. 7306, pp. 637–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. G. T. Morris, S. Veeriah, and T. A. Chan, “Genetic determinants at the interface of cancer and neurodegenerative disease,” Oncogene, vol. 29, no. 24, pp. 3453–3464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhang and R. M. Friedlander, “Using non-coding small RNAs to develop therapies for Huntington's disease,” Gene Therapy, vol. 18, no. 12, pp. 1139–1149, 2011. View at Publisher · View at Google Scholar
  25. R. Johnson and N. J. Buckley, “Gene dysregulation in Huntington's disease: REST, microRNAs and beyond,” Neuromolecular Medicine, vol. 11, no. 3, pp. 183–199, 2009. View at Scopus
  26. S. T. Lee, K. Chu, W. S. Im et al., “Altered microRNA regulation in Huntington's disease models,” Experimental Neurology, vol. 227, no. 1, pp. 172–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Marti, L. Pantano, M. Banez-Coronel et al., “A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing,” Nucleic Acids Research, vol. 38, no. 20, pp. 7219–7235, 2010. View at Publisher · View at Google Scholar
  28. C. Zuccato, A. Ciammola, D. Rigamonti et al., “Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease,” Science, vol. 293, no. 5529, pp. 493–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Mellios, H. S. Huang, A. Grigorenko, E. Rogaev, and S. Akbarian, “A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex,” Human Molecular Genetics, vol. 17, no. 19, pp. 3030–3042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Johnson, C. Zuccato, N. D. Belyaev, D. J. Guest, E. Cattaneo, and N. J. Buckley, “A microRNA-based gene dysregulation pathway in Huntington's disease,” Neurobiology of Disease, vol. 29, no. 3, pp. 438–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Nomura, M. Kimura, T. Horii et al., “MeCP2-dependent repression of an imprinted miR-184 released by depolarization,” Human Molecular Genetics, vol. 17, no. 8, pp. 1192–1199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Conaco, S. Otto, J. J. Han, and G. Mandel, “Reciprocal actions of REST and a microRNA promote neuronal identity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2422–2427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. N. Packer, Y. Xing, S. Q. Harper, L. Jones, and B. L. Davidson, “The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease,” Journal of Neuroscience, vol. 28, no. 53, pp. 14341–14346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. Mack, “MicroRNA gets down to business,” Nature Biotechnology, vol. 25, no. 6, pp. 631–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. A. Cooper, L. Wan, and G. Dreyfuss, “RNA and disease,” Cell, vol. 136, no. 4, pp. 777–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. L. Wang, Y. Huang, G. Wang, and S. D. Chen, “The potential role of microRNA-146 in Alzheimer's disease: biomarker or therapeutic?” Medical Hypotheses, vol. 78, no. 3, pp. 398–401, 2012. View at Publisher · View at Google Scholar
  37. F. Modarressi, M. A. Faghihi, N. S. Patel, B. G. Sahagan, C. Wahlestedt, and M. A. Lopez-Toledano, “Knockdown of BACE1-AS Nonprotein-Coding Transcript modulates beta- amyloid related hippocampal neurogenesis,” International Journal of Alzheimer’s Disease, vol. 2011, Article ID 929042, 11 pages, 2011. View at Publisher · View at Google Scholar
  38. J. P. Cogswell, J. Ward, I. A. Taylor et al., “Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways,” Journal of Alzheimer's Disease, vol. 14, no. 1, pp. 27–41, 2008. View at Scopus
  39. S. Q. Harper, P. D. Staber, X. He et al., “RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 16, pp. 5820–5825, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Sazani and R. Kole, “Modulation of alternative splicing by antisense oligonucleotides,” Progress in Molecular and Subcellular Biology, vol. 31, pp. 217–239, 2003. View at Scopus
  41. W. Feng and Y. Feng, “MicroRNAs in neural cell development and brain diseases,” Science China Life Sciences, vol. 54, no. 12, pp. 1103–1112, 2011. View at Publisher · View at Google Scholar