About this Journal Submit a Manuscript Table of Contents
ISRN Radiology
Volume 2013 (2013), Article ID 390379, 11 pages
http://dx.doi.org/10.5402/2013/390379
Research Article

Synergistic Radioprotection by Gamma-Tocotrienol and Pentoxifylline: Role of cAMP Signaling

1Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Scientific Research Department, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
2University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA

Received 30 April 2013; Accepted 30 May 2013

Academic Editors: M. G. Andreassi and B. Puri

Copyright © 2013 Shilpa Kulkarni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. N. Coleman, H. B. Stone, J. E. Moulder, and T. C. Pellmar, “Modulation of radiation injury,” Science, vol. 304, no. 5671, pp. 693–694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Dumont, A. L. Roux, and P. Bischoff, “Radiation countermeasure agents: an update,” Expert Opinion on Therapeutic Patents, vol. 20, no. 1, pp. 73–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Mac Manus, K. Lamborn, W. Khan, A. Varghese, L. Graef, and S. Knox, “Radiotherapy-associated neutropenia and thrombocytopenia: analysis of risk factors and development of a predictive model,” Blood, vol. 89, no. 7, pp. 2303–2310, 1997. View at Scopus
  4. J. E. Arrand and B. D. Michael, “Recent advances in the study of ionizing radiation damage and repair,” International Journal of Radiation Biology, vol. 61, no. 6, pp. 717–720, 1992. View at Scopus
  5. G. Multhoff and J. Radons, “Radiation, inflammation, and immune responses in cancer,” Frontiers in Oncology, vol. 2, p. 58, 2012.
  6. W. P. Roos and B. Kaina, “DNA damage-induced cell death by apoptosis,” Trends in Molecular Medicine, vol. 12, no. 9, pp. 440–450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Y. Cheung and C. Li, “Diabetes and hypertension: is there a common metabolic pathway?” Current Atherosclerosis Reports, vol. 14, no. 2, pp. 160–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Garcia-Bailo, A. El-Sohemy, P. S. Haddad et al., “Vitamins D, C, and E in the prevention of type 2 diabetes mellitus: modulation of inflammation and oxidative stress,” Biologics, vol. 5, pp. 7–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kulkarni, S. P. Ghosh, M. Hauer-Jensen, and K. S. Kumar, “Hematological targets of radiation damage,” Current Drug Targets, vol. 11, no. 11, pp. 1375–1385, 2010. View at Scopus
  10. A. M. Farese, F. Herodin, J. P. McKearn, C. Baum, E. Burton, and T. J. MacVittie, “Acceleration of hematopoietic reconstitution with a synthetic cytokine (SC-55494) after radiation-induced bone marrow aplasia,” Blood, vol. 87, no. 2, pp. 581–591, 1996. View at Scopus
  11. J. P. Williams, S. L. Brown, G. E. Georges et al., “Animal models for medical countermeasures to radiation exposure,” Radiation Research, vol. 173, no. 4, pp. 557–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. P. Ghosh, S. Kulkarni, K. Hieber et al., “Gamma-tocotrienol, a tocol antioxidant as a potent radioprotector,” International Journal of Radiation Biology, vol. 85, no. 7, pp. 598–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kulkarni, S. P. Ghosh, M. Satyamitra et al., “Gamma-tocotrienol protects hematopoietic stem and progenitor cells in mice after total-body irradiation,” Radiation Research, vol. 173, no. 6, pp. 738–747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Berbe, Q. Fu, M. Boerma, J. Wang, K. S. Kumar, and M. Hauer-Jensen, “γ-Tocotrienol ameliorates intestinal radiation injury and reduces vascular oxidative stress after total-body irradiation by an HMG-CoA Reductase-dependent mechanism,” Radiation Research, vol. 171, no. 5, pp. 596–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. S. Kulkarni, L. H. Cary, K. Gambles, M. Hauer-Jensen, K. S. Kumar, and S. P. Ghosh, “Gamma-tocotrienol, a radiation prophylaxis agent, induces high levels of granulocyte colony-stimulating factor,” International Immunopharmacology, vol. 14, no. 4, pp. 495–503, 2012. View at Publisher · View at Google Scholar
  16. E. Ernst, “Pentoxifylline for intermittent claudication. A critical review,” Angiology, vol. 45, no. 5, pp. 339–345, 1994. View at Scopus
  17. H. R. Dettelbach and D. M. Aviado, “Clinical pharmacology of pentoxifylline with special reference to its hemorrheologic effect for the treatment of intermittent claudication,” Journal of Clinical Pharmacology, vol. 25, no. 1, pp. 8–26, 1985. View at Scopus
  18. P. Haddad, B. Kalaghchi, and F. Amouzegar-Hashemi, “Pentoxifylline and vitamin E combination for superficial radiation-induced fibrosis: a phase II clinical trial,” Radiotherapy and Oncology, vol. 77, no. 3, pp. 324–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Amano, H. Monzen, M. Suzuki et al., “Increase in tumor oxygenation and potentiation of radiation effects using pentoxifylline, vinpocetine and ticlopidine hydrochloride,” Journal of Radiation Research, vol. 46, no. 4, pp. 373–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. W. Dion, D. H. Hussey, and J. W. Osborne, “The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice,” International Journal of Radiation Oncology Biology Physics, vol. 17, no. 1, pp. 101–107, 1989. View at Scopus
  21. C. E. Rübe, F. Wilfert, D. Uthe et al., “Modulation of radiation-induced tumour necrosis factor α (TNF-α) expression in the lung tissue by pentoxifylline,” Radiotherapy and Oncology, vol. 64, no. 2, pp. 177–187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Berbée, Q. Fu, S. Garg, S. Kulkarni, K. S. Kumar, and M. Hauer-Jensen, “Pentoxifylline enhances the radioprotective properties of γ-Tocotrienol: differential effects on the hematopoietic, gastrointestinal and vascular systems,” Radiation Research, vol. 175, no. 3, pp. 297–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Y. Kim, H. O. Pae, Y. C. Kim et al., “Pentoxifylline potentiates nitric oxide production in interleukin-1β-stimulated vascular smooth muscle cells through cyclic AMP-dependent protein kinase A pathway,” General Pharmacology, vol. 35, no. 4, pp. 205–211, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. D. E. Cox and R. D. Edstrom, “Inhibition by calmodulin of the cAMP-dependent protein kinase activation of phosphorylase kinase,” Journal of Biological Chemistry, vol. 257, no. 21, pp. 12728–12733, 1982. View at Scopus
  25. S. Ishikawa, T. Saito, and T. Kuzuya, “Evidence for a role of calmodulin in cellular cAMP production in response to vasopressin, prostaglandin E2 and forskolin in cultured rat renal papillary collecting tubule cells,” Nippon Naibunpi Gakkai zasshi, vol. 61, no. 8, pp. 823–834, 1985. View at Scopus
  26. D. J. Honess, I. F. Dennis, and N. M. Bleehen, “Pentoxifylline: its pharmacokinetics and ability to improve tumour perfusion and radiosensitivity in mice,” Radiotherapy and Oncology, vol. 28, no. 3, pp. 208–218, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. S. I. Krivenko, S. I. Dryk, M. E. Komarovskaya, and L. V. Karkanitsa, “Ionizing radiation increases TNF/cachectin production by human peripheral blood mononuclear cells in vitro,” International Journal of Hematology, vol. 55, no. 2, pp. 127–130, 1992. View at Scopus
  28. J. S. Nandi, K. G. Nair, and S. Deo, “Inhibition cAMP-phosphodiesterase in the rat heart by pentoxifylline—a new xanthine derivative,” Advances in Myocardiology, vol. 1, pp. 359–365, 1980. View at Scopus
  29. W. Y. Cheung, T. J. Lynch, R. W. Wallace, and E. A. Tallant, “cAMP renders Ca2+-dependent phosphodiesterase refractory to inhibition by a calmodulin-binding protein (calcineurin),” Journal of Biological Chemistry, vol. 256, no. 9, pp. 4439–4443, 1981. View at Scopus
  30. C. Nieder, F. B. Zimmermann, M. Adam, and M. Molls, “The role of pentoxifylline as a modifier of radiation therapy,” Cancer Treatment Reviews, vol. 31, no. 6, pp. 448–455, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Ward and S. P. Clissold, “Pentoxifylline: a review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy,” Drugs, vol. 34, no. 1, pp. 50–97, 1987. View at Scopus
  32. D. C. Dale, “Colony-stimulating factors for the management of neutropenia in cancer patients,” Drugs, vol. 62, supplement 1, pp. 1–15, 2002. View at Scopus
  33. T. J. MacVittie, A. M. Farese, W. G. Smith, C. M. Baum, E. Burton, and J. P. McKearn, “Myelopoietin, an engineered chimeric IL-3 and G-CSF receptor agonist, stimulates multilineage hematopoietic recovery in a nonhuman primate model of radiation-induced myelosuppression,” Blood, vol. 95, no. 3, pp. 837–845, 2000. View at Scopus
  34. S. Kulkarni, P. K. Singh, S. P. Ghosh, A. Posarac, and V. K. Singh, “Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of gamma-tocotrienol, a promising radiation countermeasure,” Cytokine, vol. 62, no. 2, pp. 278–285, 2013. View at Publisher · View at Google Scholar
  35. R. Ansari, M. W. Gaber, B. Wang, C. B. Pattillo, C. Miyamoto, and M. F. Kiani, “Anti-TNFA (TNF-α) treatment abrogates radiation-induced changes in vascular density and tissue oxygenation,” Radiation Research, vol. 167, no. 1, pp. 80–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. T. Chao, A. Gapor, and A. Theriault, “Inhibitory effect of δ-tocotrienol, a HMG CoA reductase inhibitor, on monocyte-endothelial cell adhesion,” Journal of Nutritional Science and Vitaminology, vol. 48, no. 5, pp. 332–337, 2002. View at Scopus
  37. V. B. Wali, S. V. Bachawal, and P. W. Sylvester, “Suppression in mevalonate synthesis mediates antitumor effects of combined statin and γ-tocotrienol treatment,” Lipids, vol. 44, no. 10, pp. 925–934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. E. Cox, M. H. Meinke, and R. D. Edstrom, “Mechanism of calmodulin inhibition of cAMP-dependent protein kinase activation of phosphorylation kinase,” Archives of Biochemistry and Biophysics, vol. 259, no. 2, pp. 350–362, 1987. View at Scopus
  39. P. Mercié, M. Seigneur, and C. Conri, “Plasma thrombomodulin as a marker of vascular damage in systemic sclerosis,” Journal of Rheumatology, vol. 22, no. 7, pp. 1440–1441, 1995. View at Scopus
  40. M. Seigneur, P. Dufourcq, F. Belloc, M. Lenoble, M. Renard, and M. R. Boisseau, “Influence of pentoxifylline on membrane thrombomodulin levels in endothelial cells submitted to hypoxic conditions,” Journal of Cardiovascular Pharmacology, vol. 25, supplement 2, pp. S85–S87, 1995. View at Scopus
  41. C. C. Ross, S. L. MacLeod, J. R. Plaxco et al., “Inactivation of thrombomodulin by ionizing radiation in a cell-free system: possible implications for radiation responses in vascular endothelium,” Radiation Research, vol. 169, no. 4, pp. 408–416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Ohdama, S. Takano, K. Ohashi, S. Miyake, and N. Aoki, “Pentoxifylline prevents tumor necrosis factor-induced suppression of endothelial cell surface thrombomodulin,” Thrombosis Research, vol. 62, no. 6, pp. 745–755, 1991. View at Publisher · View at Google Scholar · View at Scopus