About this Journal Submit a Manuscript Table of Contents
ISRN Immunology
Volume 2013 (2013), Article ID 453561, 5 pages
http://dx.doi.org/10.1155/2013/453561
Clinical Study

Circulating CCL5 Levels in Patients with Breast Cancer: Is There a Correlation with Lymph Node Metastasis?

1Multidisciplinary Breast Center, KU Leuven, University Hospitals, Herestraat 49, 3000 Leuven, Belgium
2Department of Oncology, KU Leuven, Surgical Oncology, University Hospitals, Herestraat 49, 3000 Leuven, Belgium
3Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
4Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
5Department of Pathology, KU Leuven, University Hospitals, Minderbroederstraat 12, 3000 Leuven, Belgium

Received 26 March 2013; Accepted 8 May 2013

Academic Editors: S. Seki, A. Taylor-Robinson, and A. Vicente

Copyright © 2013 Ann Smeets et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. S. Zuckerman, H. Yu, D. L. Simons, et al., “Altered local and systemic immune profiles underlie lymph node metastasis in breast cancer patients,” International Journal of Cancer, vol. 132, no. 11, pp. 2537–2547, 2013. View at Publisher · View at Google Scholar
  2. Y. Nesbeth, U. Scarlett, J. Cubillos-Ruiz et al., “CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion,” Cancer Research, vol. 69, no. 15, pp. 6331–6338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Lapteva and X. F. Huang, “CCL5 as an adjuvant for cancer immunotherapy,” Expert Opinion on Biological Therapy, vol. 10, no. 5, pp. 725–733, 2010. View at Publisher · View at Google Scholar
  4. M. Velasco-Velazquez, X. Jiao, M. de la Fuente, et al., “CCR5 antagonist blocks metastasis of basal breast cancer cells,” Cancer Research, vol. 72, no. 15, pp. 3839–3850, 2012. View at Publisher · View at Google Scholar
  5. Y. Niwa, H. Akamatsu, H. Niwa, H. Sumi, Y. Ozaki, and A. Abe, “Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer,” Clinical Cancer Research, vol. 7, no. 2, pp. 285–289, 2001. View at Scopus
  6. H. K. Kim, K. S. Song, Y. S. Park et al., “Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor,” European Journal of Cancer, vol. 39, no. 2, pp. 184–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Tsukishiro, N. Suzumori, H. Nishikawa, A. Arakawa, and K. Suzumori, “Elevated serum RANTES levels in patients with ovarian cancer correlate with the extent of the disorder,” Gynecologic Oncology, vol. 102, no. 3, pp. 542–545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Lin, S. Wan, L. Sun, et al., “Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia,” Cancer Science, vol. 103, no. 5, pp. 904–912, 2012. View at Publisher · View at Google Scholar
  9. G. Luboshits, S. Shina, O. Kaplan et al., “Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma,” Cancer Research, vol. 59, no. 18, pp. 4681–4687, 1999. View at Scopus
  10. Y. Zhang, F. Yao, X. Yao et al., “Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24- phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression,” Oncology Reports, vol. 21, no. 4, pp. 1113–1121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Yaal-Hahoshen, S. Shina, L. Leider-Trejo et al., “The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients,” Clinical Cancer Research, vol. 12, no. 15, pp. 4474–4480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. J. Duell, D. P. Casella, R. D. Burk, K. T. Kelsey, and E. A. Holly, “Inflammation, genetic polymorphisms in proinflammatory genes TNF-A, RANTES, and CCR5, and risk of pancreatic adenocarcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 4, pp. 726–731, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Y. Chang, Y. C. Lin, J. Mahalingam, et al., “Tumor-derived chemokine CCL5 enhances TGF-beta-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells,” Cancer Research, vol. 72, no. 5, pp. 1092–1102, 2012. View at Publisher · View at Google Scholar
  14. B. Cambien, P. Richard-Fiardo, B. F. Karimdjee, et al., “CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRbeta in colorectal carcinoma,” PLoS One, vol. 6, no. 12, article e28842, 2011.
  15. G. G. Vaday, D. M. Peehl, P. A. Kadam, and D. M. Lawrence, “Expression of CCL5 (RANTES) and CCR5 in prostate cancer,” Prostate, vol. 66, no. 2, pp. 124–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Y. Chuang, W. H. Yang, H. T. Chen et al., “CCL5/CCR5 axis promotes the motility of human oral cancer cells,” Journal of Cellular Physiology, vol. 220, no. 2, pp. 418–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kanterman, M. Sade-Feldman, and M. Baniyash, “New insights into chronic inflammation-induced immunosuppression,” Seminars in Cancer Biology, vol. 22, no. 4, pp. 307–318, 2012. View at Publisher · View at Google Scholar
  18. M. Dougan and G. Dranoff, “Immune therapy for cancer,” Annual Review of Immunology, vol. 27, pp. 83–117, 2009. View at Publisher · View at Google Scholar · View at Scopus