About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2013 (2013), Article ID 475296, 7 pages
http://dx.doi.org/10.1155/2013/475296
Research Article

Thermophysical, Volumetric, and Excess Properties of Aqueous Solutions of 1-Hexyl-3-methyl Imidazolium Bromide at 298.15 K and 0.1 MPa

Reprocessing Group, IGCAR, Kalpakkam 603102, India

Received 24 February 2013; Accepted 24 March 2013

Academic Editors: T. Buhse, T. Panczyk, and X. Rozanska

Copyright © 2013 Debasmita Dash et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers, “Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction,” Chemical Communications, no. 16, pp. 1765–1766, 1998. View at Scopus
  2. T. Welton, “Room temperature ionic liquids. Solvents for synthesis and catalysis,” Chemical Reviews, vol. 99, no. 8, pp. 2071–2084, 1999.
  3. K. A. Venkatesan, T. G. Srinivasan, and P. R. V. Rao, “A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle,” Journal of Nuclear and Radiochemical Sciences, vol. 10, pp. R1–R6, 2009.
  4. N. V. Plechkova and K. R. Seddon, “Applications of ionic liquids in the chemical industry,” Chemical Society Reviews, vol. 37, no. 1, pp. 123–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Tseuda and C. L. Hussey, “Electrochemical application of Room-Temperature ionic liquids,” in The Electrochemical Society Interface, InTech, Shanghai, China, 2007.
  6. P. R.V. Rao, K. A. Venkatesan, and T. G. Srinivasan, “Studies on applications of room temperature ionic liquids,” Progress in Nuclear Energy, vol. 50, no. 2–6, pp. 449–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Whitehead, J. Zhang, N. Pereira, A. McCluskey, and G. A. Lawrance, “Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores,” Hydrometallurgy, vol. 88, no. 1–4, pp. 109–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Earle and K. R. Seddon, “Ionic liquids. Green solvents for the future,” Pure and Applied Chemistry, vol. 72, no. 7, pp. 1391–1398, 2000. View at Scopus
  9. A. Heintz, “Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review,” Journal of Chemical Thermodynamics, vol. 37, no. 6, pp. 525–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. P. Verevkin, J. Safarov, E. Bich, E. Hassel, and A. Heintz, “Thermodynamic properties of mixtures containing ionic liquids: vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide,” Fluid Phase Equilibria, vol. 236, no. 1-2, pp. 222–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. V. Vasiltsova, S. P. Verevkin, E. Bich, A. Heintz, R. Bogel-Lukasik, and U. Domariska, “Thermodynamic properties of mixtures containing ionic liquids. 7. Activity coefficients of aliphatic and aromatic esters and benzylamine in 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl) imide using the transpiration method,” Journal of Chemical and Engineering Data, vol. 51, no. 1, pp. 213–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. I. A. Sumartschenkowa, S. P. Verevkin, T. V. Vasiltsova et al., “Experimental study of thermodynamic properties of mixtures containing ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate using gas-liquid chromatography and transpiration method,” Journal of Chemical and Engineering Data, vol. 51, no. 6, pp. 2138–2144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. S. Kim, S. Y. Park, S. Choi, and H. Lee, “Vapor pressures of the 1-butyl-3-methylimidazolium bromide + water, 1-butyl-3-methylimidazolium tetrafluoroborate + water, and 1-(2-hydroxyethyl)-3- methylimidazolium tetrafluoroborate + water systems,” Journal of Chemical and Engineering Data, vol. 49, no. 6, pp. 1550–1553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. X. C. Jiang, J. F. Wang, C. X. Li, L. M. Wang, and Z. H. Wang, “Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate,” Journal of Chemical Thermodynamics, vol. 39, no. 6, pp. 841–846, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. B. Pereiro, J. L. Legido, and A. Rodríguez, “Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence,” Journal of Chemical Thermodynamics, vol. 39, no. 8, pp. 1168–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. E. Ficke, R. R. Novak, and J. F. Brennecke, “Thermodynamic and thermophysical properties of ionic liquid + water systems,” Journal of Chemical and Engineering Data, vol. 55, no. 11, pp. 4946–4950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Dai, Y. H. Ju, and C. E. Barnes, “Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids,” Journal of the Chemical Society, no. 8, pp. 1201–1202, 1999. View at Scopus
  18. J. Łuczak, M. Joskowska, and J. Hupka, “Imidazolium ionic liquids in mineral processing,” Physicochemical Problems of Mineral Processing, vol. 42, pp. 223–236, 2008. View at Scopus
  19. A. E. Visser, R. P. Swatloski, W. M. Reichert, S. T. Griffin, and R. D. Rogers, “Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids,” Industrial and Engineering Chemistry Research, vol. 39, no. 10, pp. 3596–3604, 2000. View at Scopus
  20. A. Rout, K. A. Venkatesan, T. G. Srinivasan, and P. R. V. Rao, “Extraction of americium(III) from nitric acid medium by CMPO-TBP extractants in ionic liquid diluent,” Radiochimica Acta, vol. 97, no. 12, pp. 719–725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Rout, K. A. Venkatesan, T. G. Srinivasan, and P. R. V. Rao, “Extraction and third phase formation behavior of Eu(III) in CMPO-TBP extractants present in room temperature ionic liquid,” Separation and Purification Technology, vol. 76, no. 3, pp. 238–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Binnemans, “Lanthanides and actinides in ionic liquids,” Chemical Reviews, vol. 107, no. 6, pp. 2592–2614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. ASTM, “Specification for reagent water,” ASTM Standard D-1193, 2006.
  24. ASTM, “Standard test method for density and relative density of liquids by digital density meter,” ASTM Standard D-4052, 2002.
  25. D. O. Masson, “Solute molecular volumes in relation to the solvation and ionization,” Philosophical Magazine, vol. 8, pp. 218–223, 1929.