About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 604132, 9 pages
Research Article

The Design of UV Absorbing Systems for Horticultural Applications

1School of Chemistry Food Science and Pharmacy, University of Reading, Reading RG6 6AD, UK
2School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AD, UK

Received 17 June 2013; Accepted 12 August 2013

Academic Editors: I. Imae, M. Miritello, A. O. Neto, and D. Sands

Copyright © 2013 V. Mahendra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Van Haeringen, J. S. West, F. J. Davis et al., “The development of solid spectral filters for the regulation of plant growth,” Photochemistry and Photobiology, vol. 67, no. 4, pp. 407–413, 1998. View at Scopus
  2. N. C. Rajapakse and S. Li, “Exclusion of far red light reduces stem elongation of vegetable seedlings,” Acta Horticulturae, vol. 631, pp. 193–199, 2004.
  3. N. C. Rajapakse, R. E. Young, M. J. McMahon, and R. Oi, “Plant height control by photoselective filters: current status and future prospects,” HortTechnology, vol. 9, no. 4, pp. 618–624, 1999. View at Scopus
  4. J. M. Fletcher, A. Tatsiopoulou, M. Mpezamihigo, J. G. Carew, R. G. C. Henbest, and P. Hadley, “Far-red light filtering by plastic film, greenhouse-cladding materials: effects on growth and flowering in Petunia and Impatiens,” Journal of Horticultural Science and Biotechnology, vol. 80, no. 3, pp. 303–306, 2005. View at Scopus
  5. D. Doukas and C. C. Payne, “Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments,” Journal of Economic Entomology, vol. 100, no. 2, pp. 389–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Tsormpatsidis, R. G. C. Henbest, F. J. Davis, N. H. Battey, P. Hadley, and A. Wagstaffe, “UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films,” Environmental and Experimental Botany, vol. 63, no. 1–3, pp. 232–239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. S. West, S. Pearson, P. Hadley et al., “Spectral filters for the control of Botrytis cinerea,” Annals of Applied Biology, vol. 136, no. 2, pp. 115–120, 2000. View at Scopus
  8. J. R. Darwent, P. Douglas, A. Harriman, G. Porter, and M.-C. Richoux, “Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen,” Coordination Chemistry Reviews, vol. 44, no. 1, pp. 83–126, 1982. View at Scopus
  9. A. K. Sobbi, D. Wöhrie, and D. Schlettwein, “Photochemical stability of various porphyrins in solution and as thin film electrodes,” Journal of the Chemical Society, no. 3, pp. 481–488, 1993. View at Scopus
  10. H. Cho and R. G. Harvey, “Synthesis of mono- and bis(trimethylsilyl)anthracenes,” The Journal of Organic Chemistry, vol. 40, no. 21, p. 3097, 1975. View at Publisher · View at Google Scholar
  11. R. M. G. Roberts, “Structure and dehydrogenation of silylated dihydroanthracenes. A new route to 9- and 9,10-silylated anthracenes,” Journal of Organometallic Chemistry, vol. 110, no. 3, pp. 281–289, 1976. View at Publisher · View at Google Scholar
  12. H. Lehmkuhl, K. Mehler, R. Benn, et al., “Magnesium-μ-(9,10-dihydro-9,10-anthrylen)-aluminate; Komplexe des “Anthracenmagnesiums”,” Chemische Berichte, vol. 117, no. 1, pp. 389–403, 1984. View at Publisher · View at Google Scholar
  13. H. Lehmkuhl, A. Shakoor, K. Mehler, et al., “[9,10-Dihydro-9,10-bis(trimethylsilyl)-9,10-anthrylen]magnesium; Molekülstruktur eines “Anthracenmagnesiums”,” Chemische Berichte, vol. 118, no. 10, pp. 4239–4247, 1985. View at Publisher · View at Google Scholar
  14. T. Alonso, S. Harvey, P. C. Junk, C. L. Raston, B. W. Skelton, and A. H. White, “Main group-conjugated organic anion chemistry. 1. Synthesis of magnesium anthracene, silylated anthracenes, or fluoranthene tetrahydrofuran and tertiary amine complexes and of magnesium cyclooctatetraene: x-ray structure of [MgL(TMEDA)].cntdot.[MgL(THF)2] (L = 9,10-bis(trimethylsilyl)anthracene),” Organometallics, vol. 6, no. 10, pp. 2110–2116, 1987. View at Scopus
  15. S. Kyushin, M. Ikarugi, M. Goto, H. Hiratsuka, and H. Matsumoto, “Synthesis and electronic properties of 9,10-disilylanthracenes,” Organometallics, vol. 15, no. 3, pp. 1067–1070, 1996. View at Scopus
  16. T. Karatsu, R. Hazuku, M. Asuke et al., “Blue electroluminescence of silyl substituted anthracene derivatives,” Organic Electronics, vol. 8, no. 4, pp. 357–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. F. Eaton, “Reference materials for fluorescence measurement,” Pure and Applied Chemistry, vol. 60, no. 17, pp. 1107–1114, 1988. View at Publisher · View at Google Scholar
  18. S. Hirayama, R. A. Lambert, and D. Phillips, “Photophysics of meso-substituted anthracenes. Part 1.-solutions and isolated vapours,” Journal of the Chemical Society, Faraday Transactions, vol. 281, pp. 371–382, 1985. View at Publisher · View at Google Scholar
  19. A. Gilbert and J. Baggot, Essentials of Molecular Photochemistry, Blackwell scientific publications, London, UK, 1991.
  20. J. Fritzsche, “Ueber die festen kohlenwasserstoffe des steinkohlentheers,” Journal für Praktische Chemie, vol. 101, no. 1, pp. 333–343, 1867. View at Publisher · View at Google Scholar
  21. C. Ouannes and T. Wilson, “Quenching of singlet oxygen by tertiary aliphatic amines. Effect of DABCO (1,4-diazabicyclo[2.2.2]octane),” Journal of the American Chemical Society, vol. 90, no. 23, pp. 6527–6528, 1968. View at Publisher · View at Google Scholar
  22. S. Grimme, S. D. Peyerimhoff, H. Bouas-Laurent et al., “Calorimetric and quantum chemical studies of some photodimers of anthracenes,” Physical Chemistry Chemical Physics, vol. 1, no. 10, pp. 2457–2462, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Bouas-Laurent, A. Castellan, and J. P. Desvergne, “From anthracene photodimerization to jaw photochromic materials and photocrowns,” Pure and Applied Chemistry, vol. 52, pp. 2633–2648, 1980. View at Publisher · View at Google Scholar
  24. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, Pergamon Press, Oxford, UK, 3rd edition, 1988.
  25. M. Casey, J. Leonard, B. Lygo, and G. Procter, Advanced Practical Organic Chemistry, Blackie, London, UK, 1990.